摘要
The miscibility and structure of A-B copolymer/C homopolymer blends with special interactions were studied by aMonte Carlo simulation in two dimensions. The interaction between segment A and segment C was repulsive, whereas it wasattractive between segment B and segment C. In order to study the effect of copolymer chain structure on the morphologyand structure of A-B copolymer/C homopolymer blends, the alternating, random and block A-B copolymers were introducedinto the blends, respectively. The simulation results indicated that the miscibility of A-B block copolymer/C homopolymerblends depended on the chain structure of the A-B copolymer. Compared with alternating or random copolymer, the blockcopolymer, especially the diblock copolymer, could lead to a poor miscibility of A-B copolymer/C homopolymer blends.Moreover, for diblock A-B copolymer/C homopolymer blends, obvious self-organized core-shell smicture was observed inthe segment B composition region from 20% to 60%. However if diblock copolymer composition in the blends is less than40%, obvious self-organized core-shell structure could be formed in the B-segment component region from 10 to 90%.Furthermore, computer statistical analysis for the simulation results showed that the core sizes tended to increasecontinuously and their distribution became wider with decreasing B-segment component.
The miscibility and structure of A-B copolymer/C homopolymer blends with special interactions were studied by aMonte Carlo simulation in two dimensions. The interaction between segment A and segment C was repulsive, whereas it wasattractive between segment B and segment C. In order to study the effect of copolymer chain structure on the morphologyand structure of A-B copolymer/C homopolymer blends, the alternating, random and block A-B copolymers were introducedinto the blends, respectively. The simulation results indicated that the miscibility of A-B block copolymer/C homopolymerblends depended on the chain structure of the A-B copolymer. Compared with alternating or random copolymer, the blockcopolymer, especially the diblock copolymer, could lead to a poor miscibility of A-B copolymer/C homopolymer blends.Moreover, for diblock A-B copolymer/C homopolymer blends, obvious self-organized core-shell smicture was observed inthe segment B composition region from 20% to 60%. However if diblock copolymer composition in the blends is less than40%, obvious self-organized core-shell structure could be formed in the B-segment component region from 10 to 90%.Furthermore, computer statistical analysis for the simulation results showed that the core sizes tended to increasecontinuously and their distribution became wider with decreasing B-segment component.
基金
This work was supported by the National Natural Science Foundation of China (20023003, 50027001, 29704008, 20074037, 50073023 and 50290090) and subsidized by the Special Funds for Major Basic Research projects (G1999064800) and the Special Pre-Funds for