期刊文献+

拓扑半共轭关系是个预序但不是偏序(英文)

The Topological Semi-conjugacy Relation is a Preordering but not a Partial Ordering
下载PDF
导出
摘要 本短文指出,存在着紧致连通空间Y及同胚f:Y→Y,g:Y→Y使得f拓扑半共轭于g,g也拓扑半共轭于f,但f与g不拓扑共轭。据此说明了拓扑半共轭关系是个预序但不是偏序。 In this note we indicate that there exist a compact connected space Y and two homeomorphisms / : Y - Y and g : Y - Y such that / is topologically semi-conjugate to g, and g is also topologically semi-conjugate to /, but / and g are not topologically conjugate. Thus, the relation of topological semi-conjugacy is a preordering but not a partial ordering.
机构地区 汕头大学数学所
出处 《数学进展》 CSCD 北大核心 2003年第3期356-358,共3页 Advances in Mathematics(China)
基金 This research work was supported by 973 project(No.G1999075108)
关键词 拓扑半共轭 预序 偏序 紧致连通空间 拓扑空间 满射 连续映射 topological semi-conjugacy topological conjugacy preordering partial ordering
  • 相关文献

参考文献6

  • 1Banks J. Regular periodic decompositions for topologically transitive maps [J]. Ergod. Th. & Dgnam.Sys., 1997, 17: 505-529.
  • 2Blanchard F. Fully positive topological entropy and topological mixing [J]. Contemporary Math., 1992,135: 95-105.
  • 3Block L S and Coppel W A. Dynamical in One Dimension [M]. Lecture Notes in Mathematics, 1513.Berlin: Springer, 1992.
  • 4Milnor J and Thurston W. On iterated map of the interval [C]. Lecture Notes in Mathematics, 1342.Berlin: Springer, 1988, 465-563.
  • 5Mai Jiehua and Liu Cuijun. Topological semi-conjugacy, products and decompositions of adding machines[R]. (Preprint).
  • 6Dugnndji J. Topology [M]. Boston: Allyn and Bacon, 1966.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部