摘要
介绍一种新的直接分解技巧——计算常微分方程中Hopf分枝点,并首次分已知稳态解和未知稳态解两种情况讨论常微分方程中Hopf分枝点的数值计算。最后用文中所得算法编程试算有关数学和化学系统的Hopf分枝点,取得好的数值结果。
In this paper, a new direct decomposition technique for location of the Hopf bifurcation point in ordinary differential equation is presented, numerical methods for determination of the Hopf bifurcation point in two cases of known steady-state solutions and non-known steady-state solutions are first discussed. The algorithm that is described in the paper is applied to the Hopf bifurcation problems in mathematics and chemical systems, we obtain good data results.
出处
《华中师范大学学报(自然科学版)》
CAS
CSCD
1992年第1期13-18,共6页
Journal of Central China Normal University:Natural Sciences
关键词
常微分方程
复分枝点
稳态解
ordinary differential systems
Hopf bifurcation point
steady-state solution
Newton's mcthod
Krylov's method