期刊文献+

Enhanced Photoelectrochemical Properties of Cu_2O-loaded Short TiO_2 Nanotube Array Electrode Prepared by Sonoelectrochemical Deposition 被引量:6

Enhanced Photoelectrochemical Properties of Cu_2O-loaded Short TiO_2 Nanotube Array Electrode Prepared by Sonoelectrochemical Deposition
下载PDF
导出
摘要 Copper and titanium remain relatively plentiful in earth crust.Therefore,using them in solar energy conversion technologies are of significant interest.In this work,cuprous oxide(Cu2O)-modified short TiO2 nanotube array electrode was prepared based on the following two design ideas:first,the short titania nanotubes obtained from sonoelectrochemical anodization possess excellent charge separation and transportation properties as well as desirable mechanical stability;second,the sonoelectrochemical deposition technique favours the improvement in the combination between Cu2O and TiO2 nanotubes,and favours the dispersion of Cu2O particles.UV-Vis absorption and photo-electronchemical measurements proved that the Cu2O coating extended the visible spectrum absorption and the solar spectrum-induced photocurrent response.Under AM1.5 irradiation,the photocurrent density of the composite electrode(i.e.sonoelectrochemical deposition for 5 min) was more than 4.75 times as high as the pure nanotube electrode.Comparing the photoactivity of the Cu2O/TiO2 electrode obtained using sonoelectrochemical deposition with others that synthesized using plain electrochemical deposition,the photocurrent density of the former electrode was 2.2 times higher than that of the latter when biased at 1.0 V(vs.Ag/AgCl).The reproducible photocurrent response under intermittent illumination demonstrated the excellent stability of the composite electrode.Such kind of composite electrode material will have many potential applications in solar cell and other fields. Copper and titanium remain relatively plentiful in earth crust. Therefore, using them in solar energy conversion technologies are of significant interest. In this work, cuprous oxide (Cu2O)-modified short TiO2 nanotube array electrode was prepared based on the following two design ideas: first, the short titania nanotubes obtained from sonoelectrochemical anodization possess excellent charge separation and transportation properties as well as desirable mechanical stability; second, the sonoelectrochemical deposition technique favours the improvement in the combination between Cu2O and TiO2 nanotubes, and favours the dispersion of Cu2O particles. UV-Vis absorption and photo-electronchemical measurements proved that the Cu2O coating extended the visible spectrum absorption and the solar spectrum-induced photocurrent response. Under AM1.5 irradiation, the photocurrent density of the composite electrode (i.e. sonoelectrochemical deposition for 5 min) was more than 4.75 times as high as the pure nanotube electrode. Comparing the photoactivity of the Cu2O/TiO2 electrode obtained using sonoelectrochemical deposition with others that synthesized using plain electrochemical deposition, the photocurrent density of the former electrode was similar to 2.2 times higher than that of the latter when biased at 1.0 V (vs. Ag/AgCl). The reproducible photocurrent response under intermittent illumination demonstrated the excellent stability of the composite electrode. Such kind of composite electrode material will have many potential applications in solar cell and other fields.
出处 《Nano-Micro Letters》 SCIE EI CAS 2010年第4期277-284,共8页 纳微快报(英文版)
基金 the State Key Development Program for Basic Research of China (Grant No.2009CB220004) the Shanghai Basic Research Key Project (08JC1411300,0952nm01800) the National High Technology Research and Development Program of China (Grant No.2009 AA063003) Shanghai Tongji Gao Tingyao Environmental Science and Technology Development Foundation for financial support
关键词 CU2O Short TiO2 nanotube array Sonoelectrochemical deposition Cu2O Short TiO2 nanotube array Sonoelectrochemical deposition
  • 相关文献

同被引文献19

引证文献6

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部