期刊文献+

Shape-controlled Synthesis of Porous SnO_2 Nanostructures via Morphologically Conserved Transformation from SnC_2O_4 Precursor Approach

Shape-controlled Synthesis of Porous SnO_2 Nanostructures via Morphologically Conserved Transformation from SnC_2O_4 Precursor Approach
下载PDF
导出
摘要 Porous SnO_2 nanostructures with controlled shapes were synthesized by a facile morphologically conserved transformation from Sn C_2O_4 precursor approach. Well-defined Sn C_2O_4 nanostructures can be obtained through a solution-based precipitation process at ambient conditions without any surfactant. The formation mechanism of such microstructures was tentatively proposed on the basis of intrinsic crystal structure and the reaction conditions. We found that the morphologies of precursor were well maintained while numerous pores were formed during the annealing process. The combined techniques of X-ray diffraction, nitrogen absorption–desorption, field emission scanning electron microscopy, and(high-resolution) transmission electron microscopy were used to characterize the as-prepared SnO_2 products. Moreover, cyclic voltammetry(CV) study shows that the shape of CV presents a current response like roughly rectangular mirror images with respect to the zero-current line without obvious redox peaks, which indicating an ideal capacitive behavior of the SnO_2 electrodes. The photoluminescence(PL) spectrum study suggests that the as-obtained porous SnO_2 nanostructures might have a large number of defects, vacancies of oxygen, and local lattice disorder at the interface, interior and exterior surfaces. Porous SnO2 nanostructures with controlled shapes were synthesized by a facile morphologically conserved transformation from SnC2O4 precursor approach. Well-defined SnC2O4 nanostructures can be obtained through a solution-based precipitation process at ambient conditions without any surfactant. The formation mechanism of such microstructures was tentatively proposed on the basis of intrinsic crystal structure and the reaction conditions. We found that the morphologies of precursor were well maintained while numerous pores were formed during the annealing process. The combined techniques of X-ray diffraction, nitrogen absorption-desorption, field emission scanning electron microscopy, and (high-resolution) transmission electron microscopy were used to characterize the as-prepared SnO2 products. Moreover, cyclic voltammetry (CV) study shows that the shape of CV presents a current response like roughly rectangular mirror images with respect to the zero-current line without obvious redox peaks, which indicating an ideal capacitive behavior of the SnO2 electrodes. The photoluminescence (PL) spectrum study suggests that the as-obtained porous SnO2 nanostructures might have a large number of defects, vacancies of oxygen, and local lattice disorder at the interface, interior and exterior surfaces.
出处 《Nano-Micro Letters》 SCIE EI CAS 2011年第1期34-42,共9页 纳微快报(英文版)
基金 the financial support of the National Science Foundation for Distinguished Young Scholars of China(Grant No.51025517) the Innovative Group Foundation of NSFC(Grant No.50721062) the financial support of the National 973 project of China(2007CB607606)
关键词 Shape-controlled SNO2 Solution chemistry Shape-controlled SnO2 Solution chemistry
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部