期刊文献+

Creation of Triple Hierarchical Micro-Meso-Macroporous N-doped Carbon Shells with Hollow Cores Toward the Electrocatalytic Oxygen Reduction Reaction 被引量:10

Creation of Triple Hierarchical Micro-Meso-Macroporous N-doped Carbon Shells with Hollow Cores Toward the Electrocatalytic Oxygen Reduction Reaction
下载PDF
导出
摘要 A series of triple hierarchical micro-mesomacroporous N-doped carbon shells with hollow cores have been successfully prepared via etching N-doped hollow carbon spheres with CO_2 at high temperatures.The surface areas, total pore volumes and microporepercentages of the CO_2-activated samples evidently increase with increasing activation temperature from 800 to950 °C, while the N contents show a contrary trend from7.6 to 3.8 at%. The pyridinic and graphitic nitrogen groups are dominant among various N-containing groups in the samples. The 950 °C-activated sample(CANHCS-950) has the largest surface area(2072 m^2 g^(-1)), pore volume(1.96 cm^3 g^(-1)), hierarchical micro-mesopore distributions(1.2, 2.6 and 6.2 nm), hollow macropore cores(*91 nm)and highest relative content of pyridinic and graphitic N groups. This triple micro-meso-macropore system could synergistically enhance the activity because macropores could store up the reactant, mesopores could reduce the transport resistance of the reactants to the active sites, and micropores could be in favor of the accumulation of ions.Therefore, the CANHCS-950 with optimized structure shows the optimal and comparable oxygen reduction reaction(ORR) activity but superior methanol tolerance and long-term durability to commercial Pt/C with a 4 e--dominant transfer pathway in alkaline media. These excellent properties in combination with good stability and recyclability make CANHCSs among the most promising metal-free ORR electrocatalysts reported so far in practical applications. A series of triple hierarchical micro-mesomacroporous N-doped carbon shells with hollow cores have been successfully prepared via etching N-doped hollow carbon spheres with CO_2 at high temperatures.The surface areas, total pore volumes and microporepercentages of the CO_2-activated samples evidently increase with increasing activation temperature from 800 to950 °C, while the N contents show a contrary trend from7.6 to 3.8 at%. The pyridinic and graphitic nitrogen groups are dominant among various N-containing groups in the samples. The 950 °C-activated sample(CANHCS-950) has the largest surface area(2072 m^2 g^(-1)), pore volume(1.96 cm^3 g^(-1)), hierarchical micro-mesopore distributions(1.2, 2.6 and 6.2 nm), hollow macropore cores(*91 nm)and highest relative content of pyridinic and graphitic N groups. This triple micro-meso-macropore system could synergistically enhance the activity because macropores could store up the reactant, mesopores could reduce the transport resistance of the reactants to the active sites, and micropores could be in favor of the accumulation of ions.Therefore, the CANHCS-950 with optimized structure shows the optimal and comparable oxygen reduction reaction(ORR) activity but superior methanol tolerance and long-term durability to commercial Pt/C with a 4 e--dominant transfer pathway in alkaline media. These excellent properties in combination with good stability and recyclability make CANHCSs among the most promising metal-free ORR electrocatalysts reported so far in practical applications.
出处 《Nano-Micro Letters》 SCIE EI CAS 2018年第1期20-33,共14页 纳微快报(英文版)
基金 the financial support from the National Key Research and Development Program of China(2016YFB0700204) NSFC(51502327,51602332) Science and Technology Commission of Shanghai Municipality(15520720400,15YF1413800,14DZ2261203 and 16DZ2260603) Key Project for Young Researcher of State Key Laboratory of High Performance Ceramics and Superfine Microstructure and One Hundred Talent Plan of Chinese Academy of Sciences
关键词 Hierarchical pores Hollow cores N doping ELECTROCATALYSIS Oxygen reduction reaction Hierarchical pores Hollow cores N doping Electrocatalysis Oxygen reduction reaction
  • 相关文献

参考文献1

二级参考文献3

共引文献14

同被引文献36

引证文献10

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部