期刊文献+

A Plasmonic Mass Spectrometry Approach for Detection of Small Nutrients and Toxins 被引量:1

A Plasmonic Mass Spectrometry Approach for Detection of Small Nutrients and Toxins
下载PDF
导出
摘要 Nutriology relies on advanced analytical tools to study the molecular compositions of food and provide key information on sample quality/safety. Small nutrients detection is challenging due to the high diversity and broad dynamic range of molecules in food samples, and a further issue is to track low abundance toxins. Herein, we developed a novel plasmonic matrix-assisted laser desorption/ionization mass spectrometry(MALDI MS)approach to detect small nutrients and toxins in complex biological emulsion samples. Silver nanoshells(SiO_2@-Ag) with optimized structures were used as matrices andachieved direct analysis of ~ 6 n L of human breast milk without any enrichment or separation. We performed identification and quantitation of small nutrients and toxins with limit-of-detection down to 0.4 pmol(for melamine) and reaction time shortened to minutes, which is superior to the conventional biochemical method currently in use. The developed approach contributes to the near-future application of MALDI MS in a broad field and personalized design of plasmonic materials for real-case bio-analysis. Nutriology relies on advanced analytical tools to study the molecular compositions of food and provide key information on sample quality/safety. Small nutrients detection is challenging due to the high diversity and broad dynamic range of molecules in food samples, and a further issue is to track low abundance toxins. Herein, we developed a novel plasmonic matrix-assisted laser desorption/ionization mass spectrometry(MALDI MS)approach to detect small nutrients and toxins in complex biological emulsion samples. Silver nanoshells(SiO_2@-Ag) with optimized structures were used as matrices andachieved direct analysis of ~ 6 n L of human breast milk without any enrichment or separation. We performed identification and quantitation of small nutrients and toxins with limit-of-detection down to 0.4 pmol(for melamine) and reaction time shortened to minutes, which is superior to the conventional biochemical method currently in use. The developed approach contributes to the near-future application of MALDI MS in a broad field and personalized design of plasmonic materials for real-case bio-analysis.
出处 《Nano-Micro Letters》 SCIE EI CAS 2018年第3期155-163,共9页 纳微快报(英文版)
基金 the financial support from Project 81771983, 81750110544, 81750410695, 81650110523, and 81471096 (to LXQ) by National Natural Science Foundation of China (NSFC) Project 16441909300 by Shanghai Science and Technology Commission Project 2017YFC0909000 by Ministry of Science and Technology of China sponsored by the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning (TP2015015) supported by 14DZ2272400 Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition (to WC)
关键词 Plasmonic materials Laser desorption/ionization Mass spectrometry Small nutrients TOXINS Plasmonic materials Laser desorption/ionization Mass spectrometry Small nutrients Toxins
  • 相关文献

同被引文献3

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部