期刊文献+

High?Index?Faceted Ni_3S_2 Branch Arrays as Bifunctional Electrocatalysts for Efficient Water Splitting 被引量:3

High?Index?Faceted Ni_3S_2 Branch Arrays as Bifunctional Electrocatalysts for Efficient Water Splitting
下载PDF
导出
摘要 For efficient electrolysis of water for hydrogen generation or other valueadded chemicals, it is highly relevant to develop low-temperature synthesis of low-cost and high-e ciency metal sulfide electrocatalysts on a large scale. Herein, we construct a new core–branch array and binder-free electrode by growing Ni_3S_2 nanoflake branches on an atomic-layer-deposited(ALD) TiO_2 skeleton. Through induced growth on the ALD-TiO_2 backbone, cross-linked Ni_3S_2 nanoflake branches with exposed { 210} highindex facets are uniformly anchored to the preformed TiO_2 core forming an integrated electrocatalyst. Such a core–branch array structure possesses large active surface area, uniform porous structure, and rich active sites of the exposed { 210 } high-index facet in the Ni_3S_2 nanoflake. Accordingly, the TiO_2@Ni_3S_2 core/branch arrays exhibit remarkable electrocatalytic activities in an alkaline medium, with lower overpotentials for both oxygen evolution reaction(220 mV at 10 mA cm^(-2)) and hydrogen evolution reaction(112 m V at 10 mA cm^(-2)), which are better than those of other Ni_3S_2 counterparts. Stable overall water splitting based on this bifunctional electrolyzer is also demonstrated. For efficient electrolysis of water for hydrogen generation or other valueadded chemicals, it is highly relevant to develop low-temperature synthesis of low-cost and high-e ciency metal sulfide electrocatalysts on a large scale. Herein, we construct a new core–branch array and binder-free electrode by growing Ni_3S_2 nanoflake branches on an atomic-layer-deposited(ALD) TiO_2 skeleton. Through induced growth on the ALD-TiO_2 backbone, cross-linked Ni_3S_2 nanoflake branches with exposed { 210} highindex facets are uniformly anchored to the preformed TiO_2 core forming an integrated electrocatalyst. Such a core–branch array structure possesses large active surface area, uniform porous structure, and rich active sites of the exposed { 210 } high-index facet in the Ni_3S_2 nanoflake. Accordingly, the TiO_2@Ni_3S_2 core/branch arrays exhibit remarkable electrocatalytic activities in an alkaline medium, with lower overpotentials for both oxygen evolution reaction(220 mV at 10 mA cm^(-2)) and hydrogen evolution reaction(112 m V at 10 mA cm^(-2)), which are better than those of other Ni_3S_2 counterparts. Stable overall water splitting based on this bifunctional electrolyzer is also demonstrated.
出处 《Nano-Micro Letters》 SCIE EI CAS CSCD 2019年第1期205-216,共12页 纳微快报(英文版)
基金 supported by National Natural Science Foundation of China (Grant Nos. 51728204 and 51772272) Fundamental Research Funds for the Central Universities (Grant No. 2018QNA4011) Qianjiang Talents Plan D (QJD1602029) Startup Foundation for Hundred-Talent Program of Zhejiang University the Fundamental Research Funds for the Central Universities (2015XZZX010-02)
关键词 Nickel sulfide Core/branch ARRAYS Porous film BIFUNCTIONAL ELECTROCATALYSTS Electrochemical water splitting Oxygen EVOLUTION reaction(OER) Hydrogen EVOLUTION reaction(HER) Nickel sulfide Core/branch arrays Porous film Bifunctional electrocatalysts Electrochemical water splitting Oxygen evolution reaction(OER) Hydrogen evolution reaction(HER)
  • 相关文献

参考文献2

二级参考文献1

共引文献7

同被引文献21

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部