期刊文献+

Cobalt Sulfide Confined in N-Doped Porous Branched Carbon Nanotubes for Lithium-Ion Batteries 被引量:3

Cobalt Sulfide Confined in N-Doped Porous Branched Carbon Nanotubes for Lithium-Ion Batteries
下载PDF
导出
摘要 Lithium-ion batteries(LIBs) are considered new generation of large-scale energy-storage devices.However,LIBs suffer from a lack of desirable anode materials with excellent specific capacity and cycling stability.In this work,we design a novel hierarchical structure constructed by encapsulating cobalt sulfide nanowires within nitrogen-doped porous branched carbon nanotubes(NBNTs)for LIBs.The unique hierarchical Co9S8@NBNT electrode displayed a reversible specific capacity of 1310 mAhg-1 at a current density of 0.1 Ag-1,and was able to maintain a stable reversible discharge capacity of 1109 mAhg-1 at a current density of 0.5 Ag-1 with coulombic efficiency reaching almost 100% for 200 cycles.The excellent rate and cycling capabilities can be ascribed to the hierarchical porosity of the one-dimensional Co9S8@NBNT internetworks,the incorporation of nitrogen doping,and the carbon nanotube confinement of the active cobalt sulfide nanowires offering a proximate electron pathway for the isolated nanoparticles and shielding of the cobalt sulfide nanowires from pulverization over long cycling periods. Lithium-ion batteries(LIBs) are considered new generation of large-scale energy-storage devices.However,LIBs suffer from a lack of desirable anode materials with excellent specific capacity and cycling stability.In this work,we design a novel hierarchical structure constructed by encapsulating cobalt sulfide nanowires within nitrogen-doped porous branched carbon nanotubes(NBNTs)for LIBs.The unique hierarchical Co9S8@NBNT electrode displayed a reversible specific capacity of 1310 mAhg-1 at a current density of 0.1 Ag-1,and was able to maintain a stable reversible discharge capacity of 1109 mAhg-1 at a current density of 0.5 Ag-1 with coulombic efficiency reaching almost 100% for 200 cycles.The excellent rate and cycling capabilities can be ascribed to the hierarchical porosity of the one-dimensional Co9S8@NBNT internetworks,the incorporation of nitrogen doping,and the carbon nanotube confinement of the active cobalt sulfide nanowires offering a proximate electron pathway for the isolated nanoparticles and shielding of the cobalt sulfide nanowires from pulverization over long cycling periods.
出处 《Nano-Micro Letters》 SCIE EI CAS CSCD 2019年第2期157-165,共9页 纳微快报(英文版)
基金 financially supported by the Natural Science Foundation of Anhui Province(KJ2018A0534) the research fund of Anhui Science and Technology University(ZRC2014402) Materials Science and Engineering Key Discipline Foundation(AKZDXK2015A01) the Deanship of Scientific Research at King Saud University for its funding of this research through the Research Group Project No.Prolific Research Group No.1436-011
关键词 LITHIUM-ION batteries Nitrogen doping COBALT SULFIDE BRANCHED carbon NANOTUBES Lithium-ion batteries Nitrogen doping Cobalt sulfide Branched carbon nanotubes
  • 相关文献

同被引文献9

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部