期刊文献+

NASICON-Structured NaTi2(PO4)3 for Sustainable Energy Storage 被引量:4

NASICON-Structured NaTi2(PO4)3 for Sustainable Energy Storage
下载PDF
导出
摘要 Several emerging energy storage technologies and systems have been demonstrated that feature low cost,high rate capability,and durability for potential use in large-scale grid and high-power applications.Owing to its outstanding ion conductivity,ultrafast Na-ion insertion kinetics,excellent structural stability,and large theoretical capacity,the sodium superionic conductor(NASICON)-structured insertion material NaTi2(PO4)3(NTP)has attracted considerable attention as the optimal electrode material for sodium-ion batteries(SIBs)and Na-ion hybrid capacitors(NHCs).On the basis of recent studies,NaTi2(PO4)3 has raised the rate capabilities,cycling stability,and mass loading of rechargeable SIBs and NHCs to commercially acceptable levels.In this comprehensive review,starting with the structures and electrochemical properties of NTP,we present recent progress in the application of NTP to SIBs,including non-aqueous batteries,aqueous batteries,aqueous batteries with desalination,and sodium-ion hybrid capacitors.After a thorough discussion of the unique NASICON structure of NTP,various strategies for improving the performance of NTP electrode have been presented and summarized in detail.Further,the major challenges and perspectives regarding the prospects for the use of NTP-based electrodes in energy storage systems have also been summarized to offer a guideline for further improving the performance of NTP-based electrodes. Several emerging energy storage technologies and systems have been demonstrated that feature low cost,high rate capability,and durability for potential use in large-scale grid and high-power applications.Owing to its outstanding ion conductivity,ultrafast Na-ion insertion kinetics,excellent structural stability,and large theoretical capacity,the sodium superionic conductor(NASICON)-structured insertion material NaTi2(PO4)3(NTP)has attracted considerable attention as the optimal electrode material for sodium-ion batteries(SIBs)and Na-ion hybrid capacitors(NHCs).On the basis of recent studies,NaTi2(PO4)3 has raised the rate capabilities,cycling stability,and mass loading of rechargeable SIBs and NHCs to commercially acceptable levels.In this comprehensive review,starting with the structures and electrochemical properties of NTP,we present recent progress in the application of NTP to SIBs,including non-aqueous batteries,aqueous batteries,aqueous batteries with desalination,and sodium-ion hybrid capacitors.After a thorough discussion of the unique NASICON structure of NTP,various strategies for improving the performance of NTP electrode have been presented and summarized in detail.Further,the major challenges and perspectives regarding the prospects for the use of NTP-based electrodes in energy storage systems have also been summarized to offer a guideline for further improving the performance of NTP-based electrodes.
出处 《Nano-Micro Letters》 SCIE EI CAS CSCD 2019年第3期119-154,共36页 纳微快报(英文版)
基金 supported by the National Natural Science Foundation of China (No. 51302079) the Natural Science Foundation of Hunan Province (No. 2017JJ1008) the Key Research and Development Program of Hunan Province of China under Grant 2018GK2031
关键词 NaTi2(PO4)3 SODIUM SUPERIONIC conductor ANODE BATTERIES Hybrid capacitors NaTi2(PO4)3 Sodium superionic conductor Anode Batteries Hybrid capacitors
  • 相关文献

参考文献3

二级参考文献3

共引文献38

同被引文献22

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部