期刊文献+

基于LBM-LES方法前缘多孔翼型流场的数值分析

Numerical Analysis of Flow Field for Leading-edge Porosity Airfoil Based on LBM-LES Method
下载PDF
导出
摘要 前缘多孔翼型能够有效降低翼型的气动噪音,但是其对流场特性的影响还需进一步的研究。采用基于Lattice Boltzmann Method(LBM)与Large Eddy Simulation(LES)结合的LBM-LES方法对雷诺数为Re=3.5×10~6下的标准GAW-1翼型与前缘多孔GAW-1翼型进行了数值模拟,分析并比较了不同迎角下的流场结构。其中,粒子速度模型采用D2Q9模型,LES采用动态Smagorinsky亚格子模型对湍流进行模拟。数值分析结果表明:LBM-LES方法可以准确地捕捉非定常高雷诺数下湍流流场的流动分离特征,且数值结果可以很好的与实验值吻合;其中,在迎角低于4°的情况下前缘多孔介质对翼型气动特性影响较小,随迎角的增大其对气动特性的影响增大。 The leading edge porosity airfoil can effectively reduce the aerodynamic noise of the airfoil,but its influence on characteristics of the flow field needs further study.The LBM-LES method combines with the Lattice Boltzmann Method(LBM) and Large Eddy Simulation(LES) was used to numerical simulation the standard GAW-1 wing and leading edge porous GAW-1 airfoil at high Reynolds number Re=3.5×10~6,the flow features at different angles of attack was analyzed and compared.Where D2Q9 model is used as particle velocity model and LES uses a dynamic Smagorinsky subgrid model to simulate turbulence.The results shows that LBM-LES method can accurately capture the flow separation characteristics of turbulent flow field under unsteady high Reynolds number and the numerical results can be well consistent with the experimental values.Moreover,the leading edge porous medium has little effect on the aerodynamic characteristics of the airfoil,and the influence on the aerodynamic characteristics increases with the increase of the angle of attack.
出处 《南昌航空大学学报(自然科学版)》 CAS 2017年第4期28-36,共9页 Journal of Nanchang Hangkong University(Natural Sciences)
基金 江西省科技厅重点研发计划(20151BBE50026) 江西省研究生创新基金项目(YC2017-S332)
关键词 LBM-LES方法 多孔介质 数值分析 流场 气动特性 LBM-LES method porous media numerical analysis flow field aerodynamic characteristics
  • 相关文献

参考文献1

二级参考文献11

  • 1John A Ekaterinaris,Max F Platzer.Computational Prediction of Airfoil Dynamic Stall[J].Prog. Aerospace Sci.,1997,33:759-846.
  • 2Lake J P,King P I,Rivir R B.Reduction of Separation Losses on a Turbine Blade with Low Reynolds Number[R].AIAA 99-0242,1999.
  • 3Mayle R E.The Role of Laminar-Turbulent Transition in Gas Turbine Engines[R].ASME 91-GT-261,1991.
  • 4Hebbark S.Mean and Turbulence Measurements in the Boundary Layer and Wake of a Symmetric Airfoil[J].Exp.,Fluids,1986,(4):214-222.
  • 5Yao C,Paschal K.PIV Measurement of Airfoil Wake C Flow Turbulence Statistics and Turbulent Structures[R].AIAA-94-0085,1994.
  • 6Wilcox D C.Turbulence Modeling for CFD[M].California: DCW Industries, Inc.,2000.
  • 7Dexun Fu,Yanwen Ma.A High Order Accurate Difference Scheme for Complex Flow Fields[J].J.,Comput.,Physics,1997,134:1-15.
  • 8Pyle M,Schrider S,Kelly R.Subsonic Pressure Analysis of a NACA 0018 Airfoil[R].AME 342-0171,2001.
  • 9王光华,刘宝杰,刘涛,高歌.翼型近尾迹流动的PIV研究——运动学特性[J].航空动力学报,1999,14(2):119-124. 被引量:9
  • 10刘宝杰,王光华,高歌.翼型近尾迹流动的PIV研究——动力学机制[J].航空动力学报,1999,14(2):125-130. 被引量:6

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部