摘要
主要讨论了广义离散线性系统Ex(k+1)=Gx(k)+Hu(k)y(k)=Cx(k)+Du(k)的状态观测器,利用矩阵的奇异值分解和矩阵的广义逆,将广义线性系统化为奇异值标准形∑x1(k+1)=G11x1(k)+G12x2(k)+H1u(k)0=G21x1(k)+G22x2(k)+H2u(k)y(k)=C1x1(k)+C2x2(k)+Du(k)再引入状态补偿反馈u(k)=K1x2(k)+v(k),使得广义系统变为正常系统,从而设计出广义离散线性系统的全维状态观测器。x(k+1)=(G-KC)Vx(k)+(H-KD)u(k)u(k+1)+Ky(k)
For the following linear discrete generalized systems Ex(k+1)=Gx(k)+Hu(k),y(k)=Cx(k)+Du(k)(E∈Rn×mrank E<min{n,m}), the normal observer of fulldimensionality for this system is discussed. Using singular values decomposition of matrix and generalized inverse of matrix, the singular values standard form for this system is studied. The generalized systems based on state compensating are changed normal systems. That the design of normal observer of full-dimensionality for linear discrete generalized systems is given the following formula:(k+1)=(-K)V(k)+(-K)u(k)u(k+1)+Ky(k) .
出处
《宝鸡文理学院学报(自然科学版)》
CAS
2003年第2期97-99,106,共4页
Journal of Baoji University of Arts and Sciences(Natural Science Edition)
基金
国家自然基金项目资助(60274055)
自选项目资助(ZX02-45)
关键词
广义离散线性系统
奇异值分解
广义逆
状态补偿
全维状态观测器
linear discrete generalized system
singular values decomposition
generalized inverse
state compensating
normal observer of full-dimensionality