期刊文献+

快速特征映射优化的流形密度峰聚类

Manifold density peak clustering optimized by fast feature mapping
下载PDF
导出
摘要 经典的密度峰聚类不再适用于复杂的流形聚类,因此提出了快速特征映射优化的流形密度峰聚类,用快速特征映射优化的流形距离取代欧式距离,可以更好地反映不同类的点间相似性.算法首先通过寻找特征点,构造无向特征图,再通过无向特征图计算任意两个点之间的流形距离,最后按照流形距离的大小完成分配.在人工数据集和UCI数据集上的实验表明,新算法具有更高的准确率. For complex manifold clustering,density peak clustering is no longer applicable,and fast feature mapping is proposed to optimize the manifold density clustering in this paper.By using the fast feature map to optimize the manifold distance to replace the Euclidean distance,it is better to reflect the similarity between different classes of points.The algorithm first constructs the undirected feature graph by looking for the feature points.For any two points,the manifold distance between them is calculated by the undirected feature graph,and finally the distribution is done according to the size of the manifold.Experiments on artificial datasets and UCI datasets show that the new algorithm has a higher accuracy rate.
出处 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2018年第4期838-847,共10页 Journal of Nanjing University(Natural Science)
基金 江苏省高校研究生科研创新计划(KYLX15_1169)
关键词 流形聚类 密度峰 快速特征映射 流形距离 欧式距离 manifold clustering density peaks fast feature mapping manifold distance Euclidean distance
  • 相关文献

参考文献5

二级参考文献60

  • 1李洁,高新波,焦李成.一种基于修正划分模糊度的聚类有效性函数[J].系统工程与电子技术,2005,27(4):723-726. 被引量:8
  • 2张惟皎,刘春煌,李芳玉.聚类质量的评价方法[J].计算机工程,2005,31(20):10-12. 被引量:60
  • 3高能,冯登国,向继.一种基于数据挖掘的拒绝服务攻击检测技术[J].计算机学报,2006,29(6):944-951. 被引量:44
  • 4普运伟,金炜东,朱明,胡来招.核模糊C均值算法的聚类有效性研究[J].计算机科学,2007,34(2):207-210. 被引量:28
  • 5ANDERSON J P.Computer Security Threat Monitoring and Surveillance[R].James P Anderson Co,Fort Washington,Pennsylvania,1980.
  • 6PORTNOY L,ESKIN E,STOLFO S J.Intrusion detection with unlabeled data using clustering[A].Proceedings of ACM CSS Workshop on Data Mining Applied to Security (DMSA2001)[C].Philadelphia,2001.5-8.
  • 7JIANG S Y,SONG X,WANG H,et al.A clustering-based method for unsupervised intrusion detections[J].Pattern Recognition Letters,2006,27(7):802-810.
  • 8ESKIN E,ARNOLD A,PRERAU M,et al.A geometric framework for unsupervised anomaly detection:detecting intrusions in unlabeled data[A].Applications of Data Mining in Computer Security[C].Boston,2002.78-99.
  • 9OLDMEADOW J,RAVINUTALA S,LECKIE C.Adaptive clustering for network intrusion detection[A].Advances in Knowledge Discovery and Data Mining[C].Heidelberg,2004.255-259.
  • 10LEUNG K,LECKIE C.Unsupervised anomaly detection in network intrusion detection using clusters[A].Proceedings of the Twenty-Eighth Australasian Computer Science Conference[C].Sydney,2005.333-342.

共引文献275

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部