期刊文献+

High-Reliability Photovoltaic Converter Based on Improved PSO Algorithm 被引量:2

High-Reliability Photovoltaic Converter Based on Improved PSO Algorithm
下载PDF
导出
摘要 An improved particle swarm optimization(PSO)algorithm based on dynamic inertia weight and adjustment coefficient is proposed in this paper.The expressions of inertia weight and adjustment coefficient are established based on inter-particle distance and iterations.The improved algorithm is applied to a novel two-stage photovoltaic(PV)converter.The later DC/AC circuit chooses a dual-DC-input multi-level dual-buck inverter.This converter has the advantages of no shoot-through problem and high efficiency.Finally,the validity and effectiveness of the algorithm and the converter are verified with experimental results. An improved particle swarm optimization(PSO)algorithm based on dynamic inertia weight and adjustment coefficient is proposed in this paper.The expressions of inertia weight and adjustment coefficient are established based on inter-particle distance and iterations.The improved algorithm is applied to a novel two-stage photovoltaic(PV)converter.The later DC/AC circuit chooses a dual-DC-input multi-level dual-buck inverter.This converter has the advantages of no shoot-through problem and high efficiency.Finally,the validity and effectiveness of the algorithm and the converter are verified with experimental results.
机构地区 College of Automation
出处 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2018年第S1期68-74,共7页 南京航空航天大学学报(英文版)
关键词 HIGH RELIABILITY PHOTOVOLTAIC CONVERTER PSO ALGORITHM high reliability photovoltaic converter PSO algorithm
  • 相关文献

参考文献5

二级参考文献43

  • 1吴森堂,费玉华.飞行控制系统[M].北京:北京航空航天大学出版社,2006:258-262.
  • 2Kennedy J, Eberhant R C. Particle swarm optimization [ C ]// Proc of the IEEE International Conference on Neural Networks. Piscataway, NJ : IEEE Service C enter, 1995 : 1942-1948.
  • 3Mostaghim S,T eich J. The role of a-dominance in multi-objec- tive particle swarm optimization method [ C ]// Proc of the 2003 Congress on Evolutionary Computation. Canberra: IEEE, 2003 : 1764-1771.
  • 4Coello C A,Lechuga M S. MOPSO:a proposal for multiple objec- tive particle swarm optimization [ C]// Proceedings of the Con- gress on Evolutionary Computation. Piscataway: IEEE, Service Center,2002 : 1051 - 1056.
  • 5Leong W F,Yen G G. Dynamic swarms in PSO-based multiobjec- tire optimization[ C ]// IEEE Congress on Evolutionary Compu- tation. Singapore : IE EE, 2007 : 3172 - 3179.
  • 6Leong W F, Yen G G. Dynamic population size in PSO-based muhiobjective optimization [ C ]// IEEE Congress on Evolution- ary Computation. Vancouver: IEEE ,2006 : 1718-1725.
  • 7Balling R. The maximin fitness function multi-objective city and regional planning[ C ]//Proc of the 2nd lnt Conf on Evolutionary Multi-criterion Optimization. Faro : Springer,2003 : 1 - 15.
  • 8Zitzler E, Deb K,Thiele L. Comparison of multi-objective evolu- tionary algorithms: Empirical results [ C ]// Proc of the 2005 Congress on Evolutionary Multi-criterion Optimization. Berlin: Springer-Verlag,2005 : 165- 175.
  • 9Patel H, Agarwal V.Matlab-based Modeling to Study the Ef- fects of Partial Shading on PV Array Characteristics [J]. IEEE Transaction on Energy Conversion, 2008, 23 (1) : 302-310.
  • 10Safari A, Mekhilef S.Incremental Conductance MPPT Method for PV Systems [C]//Electrical and Computer Engineering, IEEE. Niagara Falls. On, Canadia, 2011 : 345-347.

共引文献47

同被引文献9

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部