摘要
为适应深松整地作业的监管需求,国家农业智能装备工程技术研究中心研制了农机深松作业监管服务系统。针对海量的农机运动轨迹数据,搭建了基于Spark技术的分布式集群轨迹处理试验平台,研究了基于分布式计算的农机运营数据分析方法。针对运营时间、作业时间、时间利用率及班次利用率等多项指标,对2015年8-12月期间的新疆塔城地区14台农机深松作业轨迹数据进行了农机运营效率分析。数据分析结果有助于测算和客观评价农机运营效率,为农机智能管理与科学调度研究提供数据支持。
In response to the regulatory requirements for deep-pitched land preparation operations,the national agricultural intelligent equipment engineering technology research center has developed a deep-seated operation supervision service system for agricultural machinery.For the massive agricultural machinery trajectory data,this research builds a distributed cluster trajectory processing experimental platform based on spark technology,and studies the agricultural computer operation data analysis method based on distributed computing.According to the operation time,work time,time utilization rate,shift utilization rate and other indicators,the agricultural machinery operation efficiency analysis of 14 agricultural machinery deep-slung operation trajectory data in the Tacheng area of Xinjiang from August to December 2015 was carried out.The results of data analysis help to measure and objectively evaluate the operational efficiency of agricultural machinery,and provide data support for agricultural machinery intelligent management and scientific dispatch research.
作者
赵国发
刘卉
肖敬
陈竞平
孟志军
Zhao Guofa;Liu Hui;Xiao Jing;Chen Jingping;Meng Zhijun(College of Information Engineering,Capital Normal University,Beijing 100048,China;Beijing Research Center for Intelligent Agricultural Equipment,Beijing 100097,China)
出处
《农机化研究》
北大核心
2020年第1期53-57,64,共6页
Journal of Agricultural Mechanization Research
基金
国家自然科学基金项目(31571563,31571564)
关键词
农机运营效率
GNSS轨迹
数据挖掘
分布式计算
Spark集群
agricultural machinery operation efficiency
GNSS trajectory
data mining
distributed computing
Spark cluster