摘要
在排球比赛过程中,扣球是得分最关键的动作之一,为了得到合适位置出手点、角度和力度等优化数据,可以采用排球机器人训练的方法,通过植入人工智能算法,对扣球过程中的数据进行采集,最后通过运动规划使扣球动作达到最佳姿态。排球机器人运动规划方案可以移植到采摘机器人的智能化训练上,加快对果实信息采集和处理效率,从而更快地捕捉到果实目标,对路径规划做出响应,对于提高采摘机器人定位和识别能力具有重要的意义。为了验证方案的可行性,对基于排球机器人运动规划系统的采摘机器人定位识别功能进行了测试,结果表明:采摘机器人可以成功定位和识别果实,且响应速度较快、误差较小,可以满足采摘机器人定位识别功能的设计需求。
Spiking is one of the most critical actions in volleyball competition.In order to get the optimal data of the appropriate position,starting point,angle and intensity,volleyball robot training method can be used to collect data in spiking process by implanting artificial intelligence algorithm,and finally make spiking action achieve the best posture through motion planning.The motion planning scheme of volleyball robot can be transplanted to the intelligent training of the picking robot,which makes the robot speed up the collection and processing efficiency of fruit information,so as to capture the fruit target faster and respond to the path planning.It is of great significance to improve the positioning and recognition ability of the picking robot.In order to verify the feasibility of the scheme,the positioning and recognition function of the picking robot based on the motion planning system of volleyball robot was tested.The test results show that the picking robot can successfully locate and recognize fruits,and the response speed is faster,and the response error is smaller,which can meet the design requirements of the positioning and recognition function of the picking robot.
作者
王刚
Wang Gang(Department of Foundational Education,Henan Art Vocational College,Zhengzhou 450002,China)
出处
《农机化研究》
北大核心
2020年第5期206-210,共5页
Journal of Agricultural Mechanization Research
基金
河南省自然科学基金项目(2018GZC074)
关键词
采摘机器人
排球运动规划
神经网络
人工智能
定位识别
picking robot
volleyball motion planning
neural network
artificial intelligence
location recognition