期刊文献+

计算机视觉在香芋病害检测中的应用研究 被引量:14

The Applied Research of Computer Vision in the Taro Disease Detection
下载PDF
导出
摘要 针对传统的人工识别香芋病害的局限性、主观性的特点,基于计算机视觉技术设计了香芋病害识别系统,由病害图像采集装置、图像处理系统、形态特征提取系统和缺陷目标检测系统组成。通过提取香芋叶片的颜色特征和纹理特征,建立香芋病害数据库,并利用支持向量机(SVM)的方法对香芋病害识别。试验结果表明:基于计算机视觉的香芋病害检测系统能够准确识别香芋的病害类别,满足使用要求,能够为后续的香芋病害防治工作提供准确信息。 Aiming at the artificial recognition of taro disease which has such characteristic as limitation and subjectivity.This paper designed the taro disease detection system based on computer vision.The system is constituted of imaging collection system,image processing system,the extraction of morphology characteristic system,and defect detection system.Through extraction color feature and texture feature of taro leaf,database of taro disease is established.The paper uses the support vector machines(SVM)to recognize taro disease.The experiment results show that the taro disease detection system based on computer vision may recognize the taro disease category accurately.It can meet the usage requirement of users and provide accurate information to the follow-up disease control.
作者 王佳 Wang Jia(Hebi Polytechnic,Hebi 458030,China)
出处 《农机化研究》 北大核心 2020年第8期241-244,共4页 Journal of Agricultural Mechanization Research
基金 河南省高等学校重点科研项目(16A880006) 河南省高等教育重点研究基金项目(13B520108)
关键词 香芋病害检测 计算机视觉 颜色特征 纹理特征 数据库 支持向量机 Taro disease detection computer vision color feature texture feature database support vector machines(SVM)
  • 相关文献

参考文献2

二级参考文献33

  • 1Boser, B. E. , Guyon, I. M. , Vapnik, V. N. , A training algorithm for optimal margin classifiers, Proc Fifth Ann. Workshop Computational Learning Theory,New York:ACM Press,1992.
  • 2Vapnik ,V. ,The Nature of Statistical Learning Theory,New York .Springer-Verlag, 1995.
  • 3Sch61kopf, B. , Smola, A. , Mfiller, K. R. , Nonlinear component analysis as a kernel eigenvalueproblem ,Neural Computation, 1998,10 : 1299-1319.
  • 4Schōlkopf, B. , Burges, C. J. C. , Smola, A. J. , Advances in Kernel Methods-Support Vector Learning,United Kingdom :Cambrige University Press, 1998.
  • 5Sch61kopf, B., Support vector regression with automatic accuracy control, Proc. Eighth Int. Conf.Artificial Neural Networks ,Perspectives in Neural Computing,Berlin :Springer-Verlag, 1998.
  • 6Burges, C. J. C. , Simplified Support Vector Decision Rules, Proc. 13th Int Conf. Machine Learning,Morgan Kaufmann,San Francisco, 1996.
  • 7Smola, A. , Schōlkopf, B. , From regularization operators to support vector kernels, In : M. Jordan, M.Kearns,and S. Solla,eds. ,Advances in Neural Information Processing Systems,MIT Press, 1998.
  • 8Girosi,F. ,An equivalence between sparse approximation and support vector machines,AI memo No.1606, MIT, Cambridge, Mass, 1997.
  • 9Weston,J. ,Density Estimation Using Support Vector Machines,Tech. Report CSD-RT-97-23,Royal Holloway Univ. of London, 1997.
  • 10Chang, C. C. , Hsu, C. W. , Lin, C. J. , The analysis of decomposition methods for support vector machines,IEEE Trans. Neural networks, 2000,11 (4) : 1003-1008.

共引文献12

同被引文献183

引证文献14

二级引证文献143

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部