期刊文献+

半定规划的一种新算法及其应用

A NEW ALGORITHM FOR SEMIDEFINITE PROGRAMMING AND ITS AN APPLICATION
原文传递
导出
摘要 A new kind of algorithm for semidefinite programming is presented by using theGolden Section Method, which sufficiently utilizes structure of the set of feasiblesolutions. Because of the simplicity and less operations, the algorithm can be usedto solve large scale problems. As a successful application, a numerical example ofMax-cut problem is given. A new kind of algorithm for semidefinite programming is presented by using the Golden Section Method, which sufficiently utilizes structure of the set of feasible solutions. Because of the simplicity and less operations, the algorithm can be used to solve large scale problems. As a successful application, a numerical example of Max-cut problem is given.
出处 《数值计算与计算机应用》 CSCD 北大核心 2003年第2期81-87,共7页 Journal on Numerical Methods and Computer Applications
基金 国家自然科学基金(69972036) 陕西省自然科学基金(2001SL05)资助项目
关键词 半定规划 凸优化问题 算法 应用 可行集 切割面 基准线 最大割问题 Semidefinite programming, New algorithm, Tangent Cut plane, Max-cut problem
  • 相关文献

参考文献11

  • 1杨德庄.灵活的运筹学和应用数学[J].中国科学(A辑),1995,25(2):136-146. 被引量:12
  • 2杨德庄.线性规划的新算法[J].中国科学(A辑),1998,28(1):24-29. 被引量:11
  • 3张敏洪.线性规划新算法的改进[J].高校应用数学学报(A辑),2000,15A(1):101-106. 被引量:6
  • 4Shuzhong Zhang, Quadratic maximization and semidefinite relaxation. Math. Prog. 86 (2000),463-473.
  • 5J.W. Nie and Y. Yuan, The sequential linear programming method for semidefinite programming,Research Report, Academy of Mathematics and Systems, Chinese Academy of Sciences, 2000.
  • 6G. Pataki, Cone-LP's and semidefiite programming: geometry and a simplex-type method, IPCO V Proc., LNCS 1084, Springer 1996: 162-174.
  • 7Y. Nesterov and A. Nemirovsky, Interior point methods in convex programming: theory and applications, SIAM. Philadelphia, PA, 1994.
  • 8C.Helmberg, Semidefinite Programming for combinatorial optimization. Konrad-Zuse-Zen trum for Information Stechnik Berlin, Germany, October 2000.
  • 9M.X. Goemans. and D.P. Willamson. Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming, J. ACM. 42(1995), 1115-1145.
  • 10F. Alizadeh, J.-p. Haeberly and M. V. Nayakkankuppam, M. L. Overton, and S. Schmieta. SDP-pack user's guide 0.9 Betal. Technical Report TR 1997-737. Courant Institute of Mathematical Science, NYU, New York, NY, June 1997.

二级参考文献6

共引文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部