期刊文献+

非线性扩散方程的一种高精度差分格式 被引量:10

A DIFFERENCE SCHEME WITH HIGH RESOLUTION FOR THE NUMERICAL SOLUTION OF NONLINEAR DIFFUSION EQUATION
原文传递
导出
摘要 The compatibility of a nine-point difference scheme is studied in this paper.Based on this result, a new nine-point difference scheme is suggested for the nu-merical solution of nonlinear diffusion equation. The new scheme keeps the same advantages of the original one, i.e., simple in computation and easy to be imple-mented. Furthermore, the new scheme is more accurate than the original one if the mesh is non-smooth and high skewed, which is most important for Lagrange method in computational fluid dynamics. The compatibility of a nine-point difference scheme is studied in this paper. Based on this result, a new nine-point difference scheme is suggested for the numerical solution of nonlinear diffusion equation. The new scheme keeps the same advantages of the original one, i.e., simple in computation and easy to be implemented. Furthermore, the new scheme is more accurate than the original one if the mesh is non-smooth and high skewed, which is most important for Lagrange method in computational fluid dynamics.
出处 《数值计算与计算机应用》 CSCD 北大核心 2003年第2期116-128,共13页 Journal on Numerical Methods and Computer Applications
基金 国家自然科学基金(No.10271019) 中国工程物理研究院预先研究基金(No.20020651)资助项目
关键词 非线性扩散方程 九点差分格式 计算流体力学 LAGRANGE方法 支撑子算法 NPS格式 偏微分方程 相容性 Nonlinear diffusion equation, difference scheme, high resolution
  • 相关文献

参考文献4

  • 1符尚武,付汉清,沈隆钧,黄书科,陈光南.二维三温能量方程的九点差分格式及其迭代解法[J].计算物理,1998,0(4):107-115. 被引量:37
  • 2李德元 水鸿寿 汤敏君.关于非矩形网格上的二维抛物型方程的差分格式[J].数值计算与计算机应用,1980,(1980):217-224.
  • 3J. E. Morel, Randy M. Roberts, and Mikhail J. Shashkov, A local support-operators diffusion discretization scheme for quadrilateral r-z meshes, J. Comp. Phys.,144(1998), 17-51.
  • 4J. E. Morel, J.E. Dendy, Jr., Michael, L. Hall, and Stephen W. White, A cell-centered Lagrangianmesh diffusion differencing scheme, J. Comp. Phys., 103:2(1992), 286-299.

共引文献43

同被引文献53

引证文献10

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部