期刊文献+

基于多尺度边缘保持正则化的超分辨率复原 被引量:29

Super-Resolution Restoration with Multi-Scale Edge-Preserving Regularization
下载PDF
导出
摘要 超分辨率复原是一种由一序列低分辨率变形图像来估计一幅(或一序列)较高分辨率的非变形图像的技术,同时,它能够消除加性噪声以及由有限检测器尺寸和光学元件产生的模糊.提出了一种基于多尺度正则化先验的最大后验概率超分辨率复原算法.算法特点如下:(1) 对运动估计结果实施可信度验证;(2) 采用图像的多尺度小波表征来定义图像的空域活动性测度,并由此构建多尺度Huber-Markov先验模型.实验结果表明,该算法不仅具有较好的超分辨率图像边缘保持能力,而且能够有效地消除图像伪迹.该算法可以应用于遥感图像、医学成像、高清晰度电视标准和合成视频变焦等领域. Super-Resolution restoration is a technique for estimating an unaliased high-resolution image (or a sequence) from an aliased video sequence and combating additive noise and blurring due to the finite detector size and optics. An improved Bayesian MAP estimator with multi-scale edge-preserving regularization for super-resolution restoration is proposed. The confidence of the motion estimation result is validated to eliminate motion artifact. The wavelet representation of an image is utilized to define the spatial activity measure of the image, and further to construct a novel multi-scale Huber-Markov model. The experimental results show that the multi-scale Huber-Markov model can be incorporated into Bayesian MAP estimator to preserve the edges of the super-resolution image effectively. This proposed algorithm is widely used for remote sensing, medical imaging, high-definition television (HDTV) standard and creation of synthetic 'video zoom'.
出处 《软件学报》 EI CSCD 北大核心 2003年第6期1075-1081,共7页 Journal of Software
关键词 超分辨率 图像复原 小波变换 多尺度 正则化 Algorithms Edge detection Markov processes Mathematical models Wavelet transforms
  • 相关文献

参考文献19

  • 1Ur H, Gross D. Improved resolution from sub-pixel shifted pictures. CVGIP: Graph. Models Image Processing, 1992,54(2): 181-186.
  • 2Kim S, Su WY. Recursive high-resolution reconstruction of blurred multi-frame images. IEEE Transactions on Image Processing,1993,2(4):534-539.
  • 3Shah NR, Zakhor A. Resolution enhancement of color video sequences. IEEE Transactions on Image Processing, 1999,8(6):879-885.
  • 4Irani M, Peleg S. Improving resolution by image registration. CVGIP: Graph. Models Image Process, 1991,53(3):231-239.
  • 5Patti A J, Sezan MI, Tekalp AM. Super-Resolution video reconstruction with arbitrary sampling lattices and nonzero aperture time.IEEE Transactions on Image Processing, 1997,6(8):1064-1076.
  • 6Eren PE, Sezan MI, Tekalp AM. Robust, object-based high-resolution image reconstruction from low-resolution video. IEEE Transactions on Image Processing, 1997,6(8): 1446-1451.
  • 7Schultz RR, Stevenson RL. Extraction of high-resolution frames from video sequences. IEEE Transactions on Image Processing,1996,5(6);996-1011.
  • 8Hardie RC, Barnard KJ, Armstrong EE. Joint MAP registration and high-resolution image estimation using a sequence of undersampled images. IEEE Transactions on Image Processing, 1997,6(12): 1621 - 1633.
  • 9Baker S, Kanade T. Limits on super-resolution and how to break them. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002,24(9): 1167- 1183.
  • 10Nguyen N, Milanfar P, Golub G. A computationally efficient super-resolution image reconstruction algorithm. IEEE Transactions on Image Processing, 2001,10(4):573-583.

同被引文献365

引证文献29

二级引证文献154

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部