期刊文献+

基于Hadoop的改进协同过滤算法研究 被引量:3

RESEARCH OF LMPROVED COLLABORATIVE FILTERING RECOMMENDATION ALGORITHM BASED ON HADOOP
原文传递
导出
摘要 协同过滤算法是个性化推荐系统中一种常用算法,但实际应用时还存在着数据稀疏性,用户兴趣变化和扩展性等问题。针对稀疏性问题,采用预测评分策略填充原始矩阵,减小稀疏性对算法精度的影响。针对用户兴趣动态变化问题,把时间因素的影响考虑进去,改变不同时刻评分的权重,解决对用户兴趣更新不及时所导致的推荐结果不够全面、准确的问题。针对算法在面临大数据处理时的扩展性问题,将改进后的算法移植到云平台,利用Hadoop在分布式计算、存储等方面的优势解决。实验结果证明,改进后的算法对上述算法得到较好的解决。 Collaborative filtering is one of the most often used algorithms of personalized recommendation system,but there are issues of data sparsity,user interests change,and extensibilityin actual applications. For data sparsity,the improved algorithm fills the original matrix by adopting the strategy of predicted ratings,in order to reduce the effect on its the accuracy. In addition,for the dynamical user interest change,the improved algorithm takes time factor into consideration,and changes the weight of different time in order to solve the problems that are not comprehensive and accurate for recommendation results,which is caused by user interests that are not updated in time. Finally by taking advantage of its distributed computing and storing,we put the improved algorithm on cloud platform to solve extensibilityproblem. The experiment results show that the improved algorithm can solve these problems better.
出处 《内蒙古农业大学学报(自然科学版)》 CAS 2015年第1期132-138,共7页 Journal of Inner Mongolia Agricultural University(Natural Science Edition)
基金 内蒙古自治区自然科学基金资助(2015MS0613) 国家自然科学基金资助项目(61363052) 内蒙古工业大学科学研究重点项目(ZD201317)
关键词 协同过滤 HADOOP 数据稀疏 扩展性 兴趣变化 Collaborative filtering Hadoop data sparsity extensibility user interests change
  • 相关文献

参考文献15

二级参考文献114

共引文献277

同被引文献33

  • 1郑先荣,汤泽滢,曹先彬.适应用户兴趣变化的非线性逐步遗忘协同过滤算法[J].计算机辅助工程,2007,16(2):69-73. 被引量:14
  • 2赵超超.基于用户和基于项目结合的个性化推荐算法[J].内蒙古农业大学学报(社会科学版),2007,9(6):139-140. 被引量:3
  • 3BREESE J S, HECKERMAN D, KADIE C. Empirical Analysis of Predictive Algorithms for Collaborative Filtering [ C ]. Proceed- ings of the Fourteenth Conference on Uncertainty in Artificial Intelligence. Morgan Kaufmann Publishers Inc. , 1998:43 -52.
  • 4KWON K, CHO J, PARK Y. Influences of Customer Preference Development on the Effectiveness of Recommendation Strategies [ J ]. Electronic Commerce Research and Applications, 2009, 8 (5) :263 - 275.
  • 5HUANG Y, BIAN L. A Bayesian Network and Analytic Hierarchy Process Based Personalized Recommendations for Tourist Attrac- tions over the Internet [ J]. Expert Systems with Applications, 2009, 36( 1 ) :933 -943.
  • 6SCHIAFFINO S, AMANDI A. Building an Expert Travel Agent as a Software Agent [ J]. Expert Systems with Applications, 2009, 36(2) :1291 - 1299.
  • 7BEDI P, VASHISTH P. Empowering Recommender Systems Using Trust and Argumentation [ J ]. Information Sciences, 2014,279: 569 - 586.
  • 8BURKE R. Hybrid Recommender Systems:Survey and Experiments [ J]. User Modeling and User- Adapted Interaction, 2002,12 (4) :331 -370.
  • 9ABBAS A, ZHANG L, KHAN S U. A Survey on Context - Aware Recommender Systems Based on Computational Intelligence Tech- niques [ J ]. Computing, 2015,97 : 667 - 690.
  • 10SONG. M, PARK S, YU H, et al. Novel RecommEndation Based on Personal Popularity Tendency [ C ]. Data Mining (ICDM), 2011 IEEE 11 th International Conference on. IEEE, 2011:507 - 516.

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部