摘要
基于ART2的网络入侵检测算法是在自适应共振理论的基础上改进而来的。该算法对接收到的网络数据以及系统状态数据进行分析判断,实现入侵方式的自动分类,并且能够对新产生的入侵方式进行分类与记忆,实现了入侵检测系统的自适应性。该算法应用到入侵检测系统中能够解决入侵检测系统中可能出现的预分类不完全的问题,这对于检测新出现的入侵类型无疑具有很大的使用价值。
The algorithm of network intrusion detection which based on ART2is an improvement grounded on automat-ic adaptive theory.This algorithm analyzes and estimates the network data received,and data of the system status auto-matically carries out sorting of intrusion methods,and at the same time ,sorts and memorizes new types of intrusion methods,thus achieving automatic adaptability.This method can be applied to intrusion detection system to deal with ex-pected incomplete sorting that may arise in the intrusion detection.There is no doubt that this method will be of great help to detect new types of intrusion.
出处
《计算机工程与应用》
CSCD
北大核心
2003年第16期167-168,229,共3页
Computer Engineering and Applications
基金
公安部2001年部级项目"网络入侵监测与跟踪"的资助
关键词
ART2
人工神经网络
入侵检测
ART2,Artificial Neural Network,Intrusion Detection