期刊文献+

不超过9个顶点的所有图的交叉数 被引量:1

Crossing Numbers of Graphs With at Most Nine Vertices
下载PDF
导出
摘要 利用本文作者研制的计算图的交叉数的算法 CCN(Calculate Crossing Number) ,本文对 n≤ 9的所有图的交叉数进行了研究 .由于图的交叉数等于其所有二连通分支的交叉数的和 ,本文计算了 n≤ 9的所有单二连通分支图的交叉数 .并得出相关的规律 :1) n个顶点 q条边的单二连通分支图的平均交叉数 Ave(n,q)可近似地表示为 q的二次多项式 ,2 )在给定顶点数 n与边数 q的单二连通分支图中围长较大的图的平均交叉数大于围长较小的图的平均交叉数 ,3)在给定顶点数 n与边数 q的单二连通分支图中当 n为奇数或 r≤ n/ 2时 ,r正则图的平均交叉数大于非 Using the algorithm CCN( Calculate Crossing Number ) invented by the author of this paper ,we investigate the crossing numbers of all graphs for n≤9. Since the crossing numbers of graph equal the sum of the crossing numbers of all its 2 connected blocks, we work on the crossing numbers of graphs for n≤9 with unique 2 connected block. In this paper, three correlative results are given: 1) The average crossing number of graph with n vertices and q edges can be signified approximately by quadratic equation of q. 2) The average crossing number of graphs with bigger girth is greater than that with smaller girth within given vertices and edges. 3) The average crossing number of r regular graphs greater than that of non regular graphs within given vertices and edges where n is odd or r≤n/2.
出处 《小型微型计算机系统》 CSCD 北大核心 2003年第6期954-958,共5页 Journal of Chinese Computer Systems
基金 国家自然科学基金资助 ( 60 0 73 0 13 ) 中国科学院数学与系统科学研究院部分资助
关键词 交叉数 正则图 围长 crossing number regular graph girth
  • 相关文献

参考文献1

二级参考文献6

  • 1[1]Salazar, G. On the crossing number of Cm×Cn. Journal of Graph Theory, 1998,28(3):163~170.
  • 2[2]Woodall, D.R. Cyclic-Order graphs and Zarankiewicz's crossing-number conjecture. Journal of Graph Theory, 1993,17(6):657~671.
  • 3[3]Kleitman, D.J. The crossing number of K5.n. Journal of Combinatorial Theory, 1970,9(4):315~323.
  • 4[4]Klesc, M., Richter, R.B., Stobert, I. The crossing number of C5 × Cn. Journal of Graph Theory, 1996,22(3):239~243.
  • 5[5]Dean, A.M., Richter, R.B. The crossing number of C4× C4. Journal of Graph Theory, 1995,19(1):125~129.
  • 6[6]Ringeisen, R.D., Beineke, L.W. The crossing number of C3 × Cn. Journal of Combinatorial Theory (Series B), 1978,24(2):134~136.

共引文献2

同被引文献11

  • 1Erdos P, Guy R K. Crossing number problems [J]. American Mathematical Monthly, 1973, 80 : 52-58.
  • 2Guy R K. A combinatorial problem [J]. Bulletin of the Malayan Mathematical Society, 1960, 7 : 68-72.
  • 3Bhatt S N, Leighton F T. A framework for solving VLSI graph layout problems [J]. Journal of Computer and System Sciences, 1984, 28:300-343.
  • 4Bienstock D. Some provably hard crossing number problems [J]. Discrete & Computational Geometry, 1991, 6(1) :443-459.
  • 5Garey M R, Johnson D S. Crossing numbers is NP- complete [J]. SIAM Journal on Algebraic and Discrete Methods, 1983, 4(3) :312-316.
  • 6LIN Xiao-hui, YANG Yuan-sheng, ZHENG Wei-ping, et al. The crossing numbers of generalized Petersen graphs with small order [J]. Discrete Applied Mathematics, 2009, 157(5) : 1016-1023.
  • 7Dean A M, Richter R B. The crossing number of C4×C4 [J]. Journal of Graph Theory, 1995, 19(1) : 125-129.
  • 8PAN Sheng-jun, Richter R B. The crossing number of Kn is 100 [J]. Journal of Graph Theory, 2007, 56(2) : 128-134.
  • 9Li Tseng-kuei. Cycle embedding in Star graphs with edge faults [J]. Applied Mathematics and Computation, 2005, 167(2):891-900.
  • 10Akers S B, Krishnamurthy B. A group-theoretic model for symmetric interconnection networks [J]. IEEE Transactions on Computers, 1989, 38(4) :555- 566.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部