摘要
研究了Volterra Lotka具有饱和项的互惠模型的平衡态方程,主要考虑了单种群具有饱和项的互惠模型.利用正的紧线性微分算子的谱性质和锥映象不动点指标,结合极值原理,上下解方法,得到了具有饱和项的互惠模型正解存在的充分条件.结果表明,这些正解的存在性与一类Schrodinger型微分算子的谱性质密切相关.
The steadystate equation of a kind of the VolterraLotka for a cooperative model with saturation is studied. A cooperative system with a saturating interaction term for one species is mainly concerned. By means of the spectral properties of positive compact linear differential operators and fixed points index of compact maps in cones, combining with maximum principles, lowerupper solutions methods, sufficient conditions of positive solutions for a cooperative system with saturation are obtained. The results show that the positive solutions are closely related to the spectral properties of certain differential operators of Schrodinger type.
出处
《西安交通大学学报》
EI
CAS
CSCD
北大核心
2003年第6期650-652,656,共4页
Journal of Xi'an Jiaotong University
基金
国家自然科学基金资助项目 (1 0 0 71 0 48)
教授部骨干教师资助计划和优秀青年教师资助项目 .
关键词
正解
谱
不动点指标
最大值原理
positive solution
spectrum
fixed points index
maximum principles