期刊文献+

非齐次-方程典则解的延拓性质

EXTENDED PROPERTIES OF STANDARD SOLUTION FOR THE IMHOMOGENEOUS-EQUATION
下载PDF
导出
摘要 利用最近关于解的延拓的某些研究 ,讨论了非齐次Cauchy -Riemann方程的典则解的特征和Cn中Hartogs延拓现象 ,得到了Cauchy -Riemann方程的典则解的一些新的延拓结果 . In this paper the standard solution′s characterize of imhomogeneous Cauchy Riemann equations and the extension phenomenon of Hartogs in C n were discused. A series of new extendable results of the standard solution for the Cauchy Riemann equation were obtained by using the latest new results.
出处 《山东师范大学学报(自然科学版)》 CAS 2003年第1期1-3,共3页 Journal of Shandong Normal University(Natural Science)
基金 中国煤炭经济学院基金重点项目 (0 10 75 1)
关键词 非齐次Canchy-Riemann方程 典则解 非齐次δ—方程 Hartogs延拓现象 恒等定理 imhomogeneous Cauchy Riemann equations standard solution solution′s extension phenomenon of Hartogs extension
  • 相关文献

参考文献3

二级参考文献10

  • 1P. Bonneau,K. Diederich.Integral solution operators for the Cauchy-Riemann equations on pseudoconvex domains[J]. Mathematische Annalen . 1990 (1-3)
  • 2Klas Diederich,John Erik Forn?ss.Pseudoconvex domains: Bounded strictly plurisubharmonic exhaustion functions[J]. Inventiones Mathematicae . 1977 (2)
  • 3Steven G. Krantz.Optimal Lipschitz andL p regularity for the equation $$\bar \partial u = f$$ on strongly pseudo-convex domains[J]. Mathematische Annalen . 1976 (3)
  • 4A. Bonami and Ph.Charpentier.Solutions de L’equation et Zeros de la Classe de Nevanlinna dansCertains Domaines Faiblement Pseudoconvexes. Annales de l Institut Fourier . 1982
  • 5B. Berndtsson and M. Andersson.Henkin-Ramirez Formulas with Weight Factors. Annales de l Institut Fourier . 1982
  • 6G. Henkin and J. Leiterer.Theory of Functions on Complex Manifolds. . 1983
  • 7J. Belanger.Holder Estimates for in C2. . 1987
  • 8J.E. Fornaess.Sup-norm Estimates for in C2. Annals of Mathematics . 1986
  • 9M. Christ.Regularity Properties of the Equation on Weakly Pseudoconvex CR Manifolds ofDimension 3. Journal of the American Mathematical Society . 1988
  • 10钟同德,邱春晖.Stein流形上(p,q)型微分形式а-闭开拓[J].厦门大学学报(自然科学版),1992,31(1):1-5. 被引量:1

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部