期刊文献+

一个新的激活策略在偏k-树上的应用

A new activation strategy of relaxed coloring game on partial k-tree
下载PDF
导出
摘要 笔者使用一个新的激活策略证明了 ,如果G是一个偏k -树 ,其色数为r=k + 1 ,缺陷度d≥ 2k + 1 ,那么 ,对这个 (r,d) -松弛竞赛染色 ,Alice有一个赢的策略。这个结果可以写为 ( 2k+ 1 ) - χg(G)≤k+ 1 ,它是文献 In this paper,we use a new activation strategy to prove that if G is a partial k tree,the chromatic number r=k+1 and the defect d≥2k+1 ,then Alice has a winning strategy for the (r,d) relaxed coloring game.The result can be written as (2k+1)- χ g(G)≤k+1 ,it is a improvement of responding result in literature [3] .
出处 《河北省科学院学报》 CAS 2003年第2期65-70,共6页 Journal of The Hebei Academy of Sciences
关键词 图论 偏κ-树 激活策略 (r d)-松弛竞赛染色 竞赛色数 缺陷度 Chromatic number Game chromatic number Relaxed game chromatic number Partial k tree
  • 相关文献

参考文献17

  • 1H L Bodlaender. On the complexity of some coloring game, in R. H. Mohring, editor, Graph Theoretical Concepts in Computer Science,vol. 484 of Lecture Notes in Computer Science,Springer- Vedag,1991,30-40.
  • 2L Cai and X Zhu. Game chromatic indes of k-degenerate graphs[J]. J. of Graph Theory,to appear.
  • 3Charles Dunn , H A Kierstead. A simple competitive graph coloring algorithrm II.
  • 4C Chou ,W Wang,X Zhu. Relaxed game chromatic number of graphs,manuscript,2000.
  • 5L J Cowen, R H Cowen, D R Woodall, Defective colorings of graphs in surfaces :partitions into subgraphs of bounded valency[J]. J. Graph Theory 1986,10:187 - 195.
  • 6L Cowen ,W. Goddard, C. Jesumm, Defective coloring revisited[J]. J. of Graph Theory 1997,24:205 - 220.
  • 7W Deuber , X Zhu. Relaxed coloring of a Graphs Combin. 1998,14:121 -130.
  • 8T Dinski , X Zhu. A bound for the game chromatic number of graphs[J]. Discrete Math. 1999,196:109 - 115.
  • 9N Eaton , T Hull. Defective list colorings of planar graphs[J]. Bull. Inst. Combin. Appl. 1999,25:79 -87.
  • 10U Faigle, W Kern, H A Kierstead, W T Trotter,On the game chromatic number of some classes of graphs[ J ].Ars Cominatorica,1993 ,35 :143 - 150.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部