期刊文献+

基于RGB-D相机的果树三维重构与果实识别定位 被引量:30

Research on 3D Reconstruction of Fruit Tree and Fruit Recognition and Location Method Based on RGB-D Camera
下载PDF
导出
摘要 为实现对果园果实机器人采摘提供科学可靠的技术指导,提出了一种基于RGB-D相机的苹果果树三维重构以及进行果实立体识别与定位的方法。使用RGB-D相机快速获取自然光照条件下果树的彩色图像和深度图像,通过融合果树图像彩色信息和深度信息实现了果树的三维重构;对果树的三维点云进行R-G的色差阈值分割和滤波去噪处理,获得果实区域的点云信息;基于随机采样一致性的点云分割方法对果实点云进行三维球体形状提取,得到每个果实质心的三维空间位置信息和果实半径。实验结果表明,提出的果树三维重构和果实立体识别与定位方法具有较强的实时性和鲁棒性,在0.8~2.0 m测量范围内,顺光和逆光环境中果实正确识别率分别达95.5%和88.5%;在果实拍摄面的点云区域被遮挡面积超过50%的情况下正确识别率达87.4%;果实平均深度定位偏差为8.1 mm;果实平均半径偏差为4.5 mm。 In order to provide a scientific and reliable technical guidance for fruit harvesting robot in orchard,a method was proposed in this paper to reconstruct 3D image for apple tree and carry out recognition and location for each apple fruit. Firstly,the color image and depth image of the fruit trees were taken by an RGB-D camera,and the 3D reconstruction of each fruit tree was carried out by fusing its color and depth information. Then,3D point cloud of the fruit region were segmented from tree 's point cloud by applying the color threshold of R-G. Finally,the 3D shape of each fruit point cloud was extracted and its 3D spatial position information and radius were also obtained by using iteratively the RANSAC( Random sample consensus) algorithm to fit each fruit to a pre-defined apple model. The experimental results showed that the proposed method of 3D reconstruction of apple tree and recognition and location of its fruits had good real-time performance and strong robustness. In the measurement range of 0. 8 ~ 2. 0 m,the correct recognition rates of fruits under frontlighting and backlighting conditions were95. 5% and 88. 5% respectively,and the correct recognition rate was 87. 4% in the case that the sheltered area of fruit point clouds was over 50%,besides,the average position calculation error of the fruit was 8. 1 mm,and the average radius calculation error was 4. 5 mm.
出处 《农业机械学报》 EI CAS CSCD 北大核心 2015年第S1期35-40,共6页 Transactions of the Chinese Society for Agricultural Machinery
基金 北京市科委计划资助项目(D151100004215002)
关键词 苹果采摘机器人 RGB-D相机 三维重建 识别 定位 点云分割 Apple harvesting robot RGB-D camera 3D reconstruction Recognition Location Segmentation of point cloud
  • 相关文献

参考文献24

  • 1司永胜,乔军,刘刚,高瑞,何蓓.苹果采摘机器人果实识别与定位方法[J].农业机械学报,2010,41(9):148-153. 被引量:75
  • 2蔡健荣,孙海波,李永平,孙力,陆化珠.基于双目立体视觉的果树三维信息获取与重构[J].农业机械学报,2012,43(3):152-156. 被引量:76
  • 3耿茵茵,蔡安妮,孙景鳌.自动图像阈值分割算法[J].计算机工程与应用,2002,38(17):119-122. 被引量:15
  • 4A.B. Payne,K.B. Walsh,P.P. Subedi,D. Jarvis.Estimation of mango crop yield using image analysis – Segmentation method[J]. Computers and Electronics in Agriculture . 2013
  • 5Wei Ji,Dean Zhao,Fengyi Cheng,Bo Xu,Ying Zhang,Jinjing Wang.??Automatic recognition vision system guided for apple harvesting robot(J)Computers and Electrical Engineering . 2011 (5)
  • 6Radu Bogdan Rusu,Zoltan Csaba Marton,Nico Blodow,Mihai Dolha,Michael Beetz.Towards 3D Point cloud based object maps for household environments[J]. Robotics and Autonomous Systems . 2008 (11)
  • 7R.Schnabel,R.Wahl,R.Klein.Efficient RANSAC for Point‐Cloud Shape Detection[J]. Computer Graphics Forum . 2007 (2)
  • 8Martin A. Fischler,Robert C. Bolles.Random sample consensus[J]. Communications of the ACM . 1981 (6)
  • 9Mohammad Bagher Lak,S. Minaei,J. Amiriparian and B. Beheshti.Apple Fruits Recognition Under Natural Luminance Using Machine Vision. Advance Journal of Food Science and Technology . 2010
  • 10H. P. H. Shum,E. S. L. Ho,Y. Jiang, et al.Real-Time Posture Reconstruction for Microsoft Kinect. Cybernetica . 2013

二级参考文献121

共引文献344

同被引文献413

引证文献30

二级引证文献240

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部