摘要
基于二维的类Wilson元 ,构造了一个用于求解三维二阶问题的类Wilson元 .证明了它对任意的六面体正则剖分是收敛的 ,并且给出了相应的误差估计 .
Based on the 2-dimensional quasi-Wilson element,the quasi-Wilson element in the 3-dimensional space with application to second-order porblem is presented.It is proved that it is convergent for arbitrary hexahedron regular subdivision in 3-dimensional space,and its error estimate is obtained.
出处
《郑州大学学报(理学版)》
CAS
2003年第2期9-12,共4页
Journal of Zhengzhou University:Natural Science Edition
基金
国家自然科学基金资助项目
编号 10 1710 92
河南省自然科学基金资助项目