期刊文献+

不同物种间胰岛素及其编码mRNA,DNA序列比较与分析 被引量:1

Comparison and analysis of insulin sequences and their coded mRNA and DNA among different species
下载PDF
导出
摘要 通过PSI BLAST搜索与人类胰岛素原 (含有 86个氨基酸 )相似的蛋白质序列 ,并进行比对 ,计算比对矩阵的相似得分和期望值 ,同时运用ClustalW算法对不同物种编码前胰岛素原mRNA及其翻译的蛋白质和DNA序列进行多重比对 .结果发现 ,脊椎动物的胰岛素蛋白质一级结构 (A链和B链 )和mRNA非常相似 ,但部分动物C肽的部分序列有差异 ;系统进化分析表明 ,人和猴、小鼠和大鼠编码胰岛素的mRNA在进化上关系相近 .各物种间编码相同氨基酸的核苷酸序列 (CDS)相同 ,但编码胰岛素的DNA序列不同 .各物种胰岛素原蛋白质序列中 ,A链和B链序列保守 ,C肽有一定的差异 ; In order to understand the sequences of insulin (protein), mRNA and DNA among different species, PSI-BLAST was used to search for the similar protein sequences on the basis of human proinsulin (86 amino acids), and the sequences alignments were made. Meanwhile, the ClustalW program was utilized to make a multiple sequences alignment of coding mRNA, translated preproinsulin and DNA of insulin. The results indicate that the insulin(A chain and B chain) primary protein sequences and mRNA of vertebrate are quite similar. But C-peptide of some animals show some differences in part of amino acid sequences. Analysis of phylogenetic tree indicates that human and monkey, mouse and rat are quite similar in the evolution. There are obvious differences between human insulin DNA sequences and those of mouse or rat. However, the CDS mRNA of varied species coding the same amino acids are homology. The conclusion is that insulin (A, B chains) sequences are conservative, however the sequences of C-peptide have some difference among human and animals, while the DNA sequences have obvious difference in human, mouse and rat.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2003年第3期292-295,共4页 Journal of Southeast University:Natural Science Edition
基金 国家自然科学基金"创新科学基金"资助项目( 60 12 110 1) 国家高科技发展计划 ( 863计划 )资助项目 ( 2 0 0 2AA2 3 10 71)
关键词 胰岛素 蛋白质(氨基酸)序列 信使RNA DNA C肽 Amino acids DNA sequences Proteins RNA
  • 相关文献

参考文献11

  • 1孙大业 郭艳林 马力耕.细胞信号转导:第2版[M].北京:科学出版社,2000.17—20.
  • 2Chang X, Joergensen A M, Bardrum P, et al. Solution structures of the R6 human insulin hexamer[J]. Biochemistry, 1997,36:9409.
  • 3Defronzo K A, Bonadonna R C, Ferrannini E. Pathogenesis of NIDDM: a balanced overview[J]. Diabetes Care, 1992,15:318 - 338.
  • 4Mallone R. Ortolan E, Saccucci F, et al. Autoantibody response to CD38 in Caucasian patients with type 1 and type 2 diabetes[J]. Diabetes, 2001, 50(4) :752 - 762.
  • 5Del Prato S, Marchetti P, Bonadonna R C. Phasic insulin release and metabolic regulation in type 2 diabetes[J]. Diabetes,2002, 51(sup.1): 109- 115.
  • 6Stephen F A,Thomas L M,Alejandro A S,et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs[J]. Nucleic Acids Res, 1997, 25: 3389- 3402.
  • 7Thompson J D,Higgins D G,GihsonT J. ClustalW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice[J]. Nucleic Acids Res, 1994, 22(22) :4673 - 4680.
  • 8Mount D W. Bioinformatics: Sequence and Genome Analysis[M]. Cold Spring Harbor Laboratory Press, 2001. 329 -331.
  • 9Baldi P, Brunak S, Chauvin Y, et al. Naturally occurring nucleosome positioning signals in human exon and introns[J]. J Mol Bio, 1996, 263: 503- 510.
  • 10Burge C B, Karlin S. Finding the genes in genomic DNA[J]. Curr Opin Stru Biol, 1998, 8:346- 354.

共引文献1

同被引文献28

  • 1PESSIN J E, SALTIEL A R. Signaling pathways in insulin action : molecular targets of insulin resistance [ J]. Journal of Clinical Investigation, 2000, 106 (2) : 165 -170.
  • 2MOMMSEN T, PLISE3SKAYA E. Insulin in fishes and agnathans: history, structure, and metabolic regulation [ J ]. Reviews in Aquatic Sciences, 1991, 4 (2/3) : 225 -259.
  • 3NAVARRO I, ROJAS P, GUTIERREZ J, et al. Insights into insulin and glucagon responses in fish [ J ]. Fish Physiology and Biochemistry, 2002, 27 (3): 205-216.
  • 4ENES P, SANCHEZ-GURMACHES J, NAVARRO I, et al. Role of insulin and IGF-I on the regulation of glucose metabolism in European sea bass (Dicentrarchus labrax) fed with different dietary carbohydrale levels [ J ]. Comparative BioehemistzT and Physiology Part A: Molecular Integrative Physiology, 2010, 157(4) : 346-353.
  • 5MONTSERRAT N, NAVARRO M I, GUTIERREZ J, et al. Role of insulin, insulin-like growth factors, and muscle regulatory factors in the compensatory growth of the trout ( Oncorhynchus mykiss ) [ J ]. General Comparative Endocrinology, 2007, 150 (3) : 462 - 472.
  • 6DUAN C, HIRANO T. Effects of insulin-like growth factor-I and insulin on the in-vitro uptake of sulphate by eel branchial cartilage: evidence for the presence of independent hepatic and pancreatic sulphation factors [ J 1. Journal of Endocrinology, 1992, 133 (2) : 211 -219.
  • 7ANDOH T, NAGASAWA H. Two molecular forms of insulin from barfin flounder, Verasper moseri, are derived from a single gene [J]. Zoological Science, 1998, 15 (6): 931 - 937.
  • 8A1-MAHROUKI A A, Molecular cloning of osteoglossomorphs and Cellular Endocrinology IRWIN D M, YOUSON J H, et al. preproinsulin cDNAs from several a cyprinid [ J ]. Molecular and 2001, 174 (1/2) : 51 -58.
  • 9MANSOUR M, WRIGHT J R JR, POHAJDAK B. Cloning, sequencing and characterization of the tilapia insulin gene [ J ]. Comparative Biochemistry and Physiology Part B: Biochemistry Molecular Biology, 1998, 121 (3) : 291 - 297.
  • 10SOROKIN A V, PETRENKO O I, KAVSAN V M, et al. Nucleotide sequence analysis of the cloned salmon preproinsulin cDNA [J]. Gene, 1982, 20 (3): 367-376.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部