期刊文献+

电渗流泵的机理分析 被引量:6

Mechanism analysis of electro-osmotic pump
下载PDF
导出
摘要 以实现CPU的温度控制、提高微流体的流动速度为目标 ,对电渗流的机理进行了分析 .应用无网格算法对Laplace方程、Poisson Boltzmann方程、Navier Stokes方程进行数值求解 ,得到的数值仿真结果与解析近似解吻合较好 .对微直管内的微流体的流动进行了仿真 ,再现了微流体流动的驱动过程 ,并讨论了微流体的流动速度与外加垂直电场的电势和ζ电势的相关性 .本文的数学模型不仅可以仿真几何形状简单的微直管内微流体的驱动过程 ,也可仿真几何形状复杂、ζ电势较大条件下的微直管内微流体的流动 。 The mathematical models are set up for the electro-osmotic pump in this paper. The meshless algorithm is used to solve the Laplace equation, Poisson-Boltzmann equation and Navier-Stokes equations. The numerical results agree well with the closed form solution under low ζ potential, which proves the validity of the numerical solution. The simulation results also uncover the driven process of the micro-flow. It is demonstrated that the flat flow can be formed in a straight micro-tube acted by the applied voltage. The flow rate is proportional to the applied voltage and the ζ potential. This model can be used to analyze the micro-pumps with complex geometrical shapes.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2003年第3期307-311,共5页 Journal of Southeast University:Natural Science Edition
基金 江苏省自然科学基金资助项目 (BK2 0 0 2 0 60 ) 国家自然科学基金资助项目 ( 5 0 2 75 0 2 6)
关键词 电渗流 纳维-司托克斯方程 无网格算法 Algorithms Computer simulation Electric potential Electroosmosis Mathematical models Navier Stokes equations Poisson equation
  • 相关文献

参考文献7

  • 1Ronald F P 戴干策等译.物理化学流体动力学导论[M].上海:华东化工学院出版社,1992.42—46.
  • 2Zeng Shulin, Chen Chuanhua, Mikkelsen Jr James C, et al.Fabrication and characterization of electroosmotic micropumps[J]. Sensors and Actuators B, 2001,79:107- 114.
  • 3Prins M W J, Welters W J J, Weekamp J W. Fluid control in multichannel structures by electwcapillary pressure [J].Science 2001, 291(1): 277-280.
  • 4Stroock A D, Dertinger S K W, Ajdarr A, et al. Chaotic mixer for microchannels [J]. Science, 2002, 295(1):647-651.
  • 5Ronald F. Probstein, physicochemical hydrodynamics: an introduction. 2nd ed [M]. New York: New York Willey,1998. 41 - 45.
  • 6Mitchell M J, Qiao R, Aluru N R. Meshless analysis of steady-state electro-osmotic transport [ J ]. IEEE Journal of Microelectromechnical System, 2000, 9(4) : 435 - 449.
  • 7Aluru N R, Li G. Finite cloud method: a fixed reproducing kernel approximation[J]. Int J Numer Meth Engrg, 2001,50:2373 - 2410.

同被引文献82

引证文献6

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部