摘要
以实现CPU的温度控制、提高微流体的流动速度为目标 ,对电渗流的机理进行了分析 .应用无网格算法对Laplace方程、Poisson Boltzmann方程、Navier Stokes方程进行数值求解 ,得到的数值仿真结果与解析近似解吻合较好 .对微直管内的微流体的流动进行了仿真 ,再现了微流体流动的驱动过程 ,并讨论了微流体的流动速度与外加垂直电场的电势和ζ电势的相关性 .本文的数学模型不仅可以仿真几何形状简单的微直管内微流体的驱动过程 ,也可仿真几何形状复杂、ζ电势较大条件下的微直管内微流体的流动 。
The mathematical models are set up for the electro-osmotic pump in this paper. The meshless algorithm is used to solve the Laplace equation, Poisson-Boltzmann equation and Navier-Stokes equations. The numerical results agree well with the closed form solution under low ζ potential, which proves the validity of the numerical solution. The simulation results also uncover the driven process of the micro-flow. It is demonstrated that the flat flow can be formed in a straight micro-tube acted by the applied voltage. The flow rate is proportional to the applied voltage and the ζ potential. This model can be used to analyze the micro-pumps with complex geometrical shapes.
出处
《东南大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2003年第3期307-311,共5页
Journal of Southeast University:Natural Science Edition
基金
江苏省自然科学基金资助项目 (BK2 0 0 2 0 60 )
国家自然科学基金资助项目 ( 5 0 2 75 0 2 6)
关键词
电渗流
纳维-司托克斯方程
无网格算法
Algorithms
Computer simulation
Electric potential
Electroosmosis
Mathematical models
Navier Stokes equations
Poisson equation