期刊文献+

一类多目标Lipschitz规划的对偶

On the Duality for a Class of Multiobjective Lipschitzian Programming
下载PDF
导出
摘要 对Lipschitz函数定义了广义本性伪凸的概念,并对包含这类广义凸函数的多目标Lipschitz规划建立了Mond Weir型对偶和Wolf型对偶,证明了原规划与对偶规划之间的对偶定理。 A class of Lipschitz functions called the generalized essentially pseudoconvex function is defined. The sufficient optimal conditions and duality results are obtained for a multiobjective programming problem involving generalized essentially pseudo convex functions.
出处 《长春工业大学学报》 CAS 2003年第2期12-14,共3页 Journal of Changchun University of Technology
基金 国家自然科学基金资助项目(19771034)
关键词 LIPSCHITZ规划 广义本性伪凸 对偶 Lipschitzian programming generalized essentially pseudo convex dual.
  • 相关文献

参考文献9

  • 1Hanson M A. On sufficiency of the Kuhn-Tucke condition[J]. J. Math. Anal. Appl. , 1981,80: 545-550.
  • 2Mangasarian O L. Nonlinear programming [M].New York: Mc Graw-Hill, 1969.
  • 3Egudo R R. Efficiency and genrealized convex duality for multiobjective programs[J]. J. Math. Anal.Appl. , 1989,138 : 84-94.
  • 4Bector C R, Chondra S, Bettor M K. Sufficient optimality conditions and duality for a quasiconvex programming problem[J]. JOTA, 1988,59(2): 209-221.
  • 5Preda V. On efficiency and duality for multiobjective programs[J]. J. Mark. Anal. Appl. , 1992,166(3) :65-377.
  • 6Clarke F H. Optimization and nonsmooth analysis[M]. New York: Wiley-Interscience, 1983.
  • 7Craren B D. Nonsmooth multiobjective programming[J]. Nmar. Funct. Anal. and Opti. , 1989,10:49-64.
  • 8Tanaka Y. On generalized pseudo convex functions[J]. J. Math. Anal. Appl., 1989,144: 342-355.
  • 9Jeyakumar V. Equivalence of saddle-points and optima, and duality for a class of nonsmooth non convex problems[J]. J. Math. Anal. Appl. , 1988,144:334-343.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部