期刊文献+

石墨烯纳米带探测器的仿真与结构优化

Graphene Nanoribbon Detector Simulation and Structure Optimization
下载PDF
导出
摘要 石墨烯的光学响应极其微弱,制约了它在光电子学领域的应用。介绍了石墨烯探测器的基本工作原理,并基于石墨烯材料的带隙调控机理建立了石墨烯纳米带探测器结构模型,并进行数学模拟仿真,分析了纳米带宽度、I区长度及偏置电压对响应电流的影响,从而优化石墨烯纳米带探测器的结构参数,为高灵敏度室温石墨烯探测器的研究奠定基础。 The optical response of graphene is extremely weak, restrict its application in the field of optoelectronics. This paper introduces the basic working principle of the detector based on graphene, graphene materials and energy gap of the regulation mechanism of a graphene nanoribbon detector structure model and mathematical simulation, analysis of the effects of nano belt width、 I length and the bias voltage on the response current, so as to optimize the structure parameters of the graphene nanoribbon detector. To lay the foundation for the research of high sensitivity of graphene at room temperature detector.
作者 盛奋华
出处 《宁波职业技术学院学报》 2015年第6期87-89,94,共4页 Journal of Ningbo Polytechnic
关键词 石墨烯 石墨烯纳米带 探测器 仿真 graphene graphene nanoribbo detector simulation
  • 相关文献

参考文献11

  • 1Yang Li,Park Cheol-Hwan,Son Young-Woo,Cohen Marvin L,Louie Steven G.Quasiparticle energies and band gaps in graphene nanoribbons. Physical Review . 2007
  • 2范军领.石墨烯传感器的研究进展[J].材料导报,2012,26(7):31-35. 被引量:16
  • 3焦小亮,张悦炜,何潺,徐剑峰,杨靖霞,洪樟连.石墨烯制备与带隙调控的研究进展[J].材料导报,2012,26(5):12-17. 被引量:5
  • 4袁明文.石墨烯基电子学研究进展[J].微纳电子技术,2010,47(10):589-594. 被引量:7
  • 5M. Kassaee,M. Majdi,H. Aref Rad,E. Motamedi.??A theoretical quest for graphene nanoribbons: effects of nitrogen substitution on the ground state alteration(J)Monatshefte für Chemie - Chemical Monthly . 2012 (4)
  • 6Hod, Oded,Scuseria, Gustavo E.Electromechanical properties of suspended graphene nanoribbons. Nano Letters . 2009
  • 7V. V. Popov,T. Yu,Bagaeva, T. Otsuji,V. Ryzhii.Oblique terahertz plasmons in graphenenanoribbon arrays. Physical Review . 2010
  • 8SALIMATH L.Spin transport in bilayer graphene armchair nanoribbon:a monte carlo simulation study. Electron Devices . 2013
  • 9GHOSH N K.Study of the graphene nanoribbons within hubbard hamiltonian. Armenian Journal of Physics . 2013
  • 10ZOHREH M.A DFT study of formaldehyde adsorption on functionalized graphene nanoribbons. Physica E Low dimensional Systems Nanostructures . 2015

二级参考文献83

  • 1Novoselov K S, Geim A K, Firsov A A. Electric field effect in atomically thin carbon films [J]. Science,2004,306 : 666.
  • 2Meyer J C, Geim A K, Novoselov K S, et al. The structure of suspended graphene sheets [J]. Nature, 2007,446 : 60.
  • 3Geim A K, Novoselov K S. The rise of graphene[J]. Na- ture Mater, 2007,6.183.
  • 4Avouris P, Chen Z H, Perebeinos V. Carbon-based elec- tronics[J]. Nature Nanotechn, 2007,2: 605.
  • 5Williams J R, Dicarlo L C, Marcus C M. Quantum Hall effect in a gate-controlled pon junction of graphene [J]. Science, 2007,317 : 638.
  • 6Novoselov K S, Jiang Z, Zhang Y, et al. Room-temperature quantum hall effect in graphene [J]. Science, 2007, 315;1379.
  • 7Du Xu, Skachko I, Duerr F, et al. Fractional quantum Hall effect and insulating phase of Dirac electrons in grapheme [J]. Nature,2009,462:192.
  • 8Bolotin K I, Ghahari F, Shuiman M D, et al. Observation of the fractional quantum Hall effect in grapheme [J]. Na- ture, 2009,462 : 196.
  • 9Heersche H B, Jarillo-Herrero P, Oostinga J B, et al. Bipo- lar supercurrent in graphene [J]. Nature, 2009,446 : 56.
  • 10Zhou Ming, Zhai Yueming, Dong Shaojun. Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide [J]. Anal Chem, 2009,81: 5603.

共引文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部