期刊文献+

同宿流形中的奇异轨道

Singular orbits in homoclinic manifolds
下载PDF
导出
摘要 研究较一般的高维退化系统的同宿、异宿轨道分支问题 .利用推广的Melnikov函数、横截性理论及奇摄动理论 ,对具有鞍 -中心型奇点的带有角变量的奇摄动系统 ,在角变量频率产生共振的情况下 ,讨论其同宿、异缩轨道的扰动下保存和横截的条件 . The bifurcation problems of the homoclinic and heteroclinic orbits for the general degenerated system of higher dimensions are studied.By using the generalized Melnikov functions,transversal theory and singular perturbation theory,the conditions of persistence and transversality of homoclinic and heteroclinic orbits for singular perturbation system which has saddle\|center type equilibrium with a reaonance about action\|angle variables are discussed.Moreover,some known results are extended.
出处 《高校应用数学学报(A辑)》 CSCD 北大核心 2003年第2期139-148,共10页 Applied Mathematics A Journal of Chinese Universities(Ser.A)
基金 国家自然科学基金 (1 0 0 71 0 2 2)
关键词 奇摄动系统 MELNIKOV函数 奇异轨道 singular perturbation system Melnikov function singular orbit
  • 相关文献

参考文献6

二级参考文献16

  • 1孙建华,罗定军.Local and Global Bifurcations With Nonhyperbolic Equilibria[J].Science China Mathematics,1994,37(5):523-534. 被引量:5
  • 2冯贝叶.同宿及异宿轨线的研究近况[J].Journal of Mathematical Research and Exposition,1994,14(2):299-311. 被引量:6
  • 3朱德明.Melnikov型向量函数和奇异轨道的主法向[J].中国科学(A辑),1994,24(4):346-352. 被引量:4
  • 4Deming Zhu,Zhihong Xia.Bifurcations of heteroclinic loops[J].Science in China Series A: Mathematics.1998(8)
  • 5Shui -Nee Chow,Bo Deng,Bernold Fiedler.Homoclinic bifurcation at resonant eigenvalues[J].Journal of Dynamics and Differential Equations.1990(2)
  • 6Jin,Y.L,Li,X.Y,Liu,X.B.Non-twistedhomoclinicbifurcationsfordegeneratedcase[].Chinese Annals of Mathematics.2001
  • 7TIAN Q P,ZHU D M.Bifurcations of nontwisted heteroclinic loops[].Science in China.2000
  • 8Zhu D M.Exponential trichotomy and heteroclinic bifurcation[].Nonlinear Analysis.1997
  • 9Abraham R,Marsden J E.Manifolds, Tensor Analysis and Applications[]..1983
  • 10Han M. A,Luo D. J,Zhu D. M.The uniqueness of limit cycles bifurcating from a singular clsoed orbit (Ⅲ)[].Acta Mathematica Sinica.1992

共引文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部