期刊文献+

几种改进型RLS算法在自适应滤波系统中的应用 被引量:5

Application of Several Improved RLS Algorithms in Adaptive Filter System
下载PDF
导出
摘要 对用于信道估值 (自适应模拟系统 )和信道均衡 (自适应逆模拟系统 )的几种改进型 RL S算法进行了比较。由于信道估值的最优解可以模拟出信道的传输函数 ,从而得到较为准确的信道参数 ,而信道均衡的最优解却受噪声功率谱密度的影响 ,因此提出了适用于时变信道的、基于信道估值的均衡方法 。 This paper presents the comparison among several improved RLS(Recursive Least Squares) algorithms used for channel identification (adaptive modeling system) and channel equalization (adaptive inverse modeling system). The optimal solution of channel identification can be used to estimate the transmission function of the channel, which leads to pretty accurate channel parameters, while the optimal solution of channel equalization is influenced by the power density of noise. Therefore, this paper presents a channel identification based equalization method for time-variant channel. With this method, channel identification algorithm with good performance is used to improve the performance of adaptive equalization.
出处 《重庆邮电学院学报(自然科学版)》 2003年第3期14-17,26,共5页 Journal of Chongqing University of Posts and Telecommunications(Natural Sciences Edition)
基金 国家"十五"军事预研基金资助 ( 110 0 10 3 0 3 )
关键词 RLS算法 信道估值 自适应模拟 信道均衡 RLS algorithms channel identification adaptive modeling channel equalization
  • 相关文献

参考文献4

  • 1PARK D J,JUN B E. Selfperturbing recursive least squares algorithm with fast tracking capability[J]. Electronics Letters 1992,28(6) :558-559.
  • 2JIANG J,COOK R. Fast parameter tracking RLS algorithm with high noise immunity[J].Electronics Letters, 1996,28(22) : 2043-2045.
  • 3KWONG Seop Eom, DONGJo Park. Fast tracking and noise-immunised RLS algorithm based on kalman filter [J]. Electronics Letters,1996, 32(25): 2311-2312.
  • 4FECHTEL S A. An investigation of channel estimation and equalization techniques for moderately rapid fading HF-channels[C]. In ICC'91 Conf,Rec, 1991.

同被引文献26

  • 1陈国础,宋文涛,罗汉文,陈强.一种改进RLS算法的性能研究及应用[J].无线电通信技术,2005,31(3):42-43. 被引量:9
  • 2王丽梅,郑建芬,郭庆鼎.基于载波注入的凸极永磁同步电动机无传感器控制[J].电机与控制学报,2005,9(4):333-336. 被引量:37
  • 3翁玉麟,邓长虹.自适应神经网络模糊推理系统最优参数的研究[J].计算机仿真,2005,22(8):140-143. 被引量:5
  • 4S H Leung, C F So. Variable forgetting factor nonlinear RLS algorithm in correlated mixture noise [ J]. Electronics Letters, 2001, 37(13) :861 -862.
  • 5D J Park, B E Jun. Selfperturbing Recursive Least Squares algorithm with fast tracking capability[ J]. Electronics Letters, 1992, 28(6) : 558 -559.
  • 6J Jiang, R Cook. Fast parameter tracking RLS algorithm with high noise immunity [ J ]. Electronics Letters, 1992,28 ( 22 ) : 2043 - 2044.
  • 7Bershad N J, Bermudez J C M, Toumere J Y.Stochastic analysis of the LMS algorithm for system identification with sub- space input[J].IEEE Transation on Signal processing, 2008, 56(3) : 1018-1027.
  • 8刘艳玲,邱丙益,樊长江.基于LMS算法的卫星通信回波抵消方法[J].船舶电子工程,2007,27(6):100-102.
  • 9Haykin S.Adaptive filter theory[M].4th ed.Upper Saddle River, NJ: Prentice Hall, 2002.
  • 10DinizPSR.自适应滤波算法与实现[M].2版.刘郁林,景晓军,谭刚兵,译.北京:北京电子工业出版社,2004.

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部