摘要
提出了一种求解 TSP问题的近似算法—嵌套插队算法。这种算法结合了启发式算法和随机化算法以及局部寻优的思想。实验结果表明对于较小规模的 TSP问题 ,直接用插队算法 ( QJA)就能以很大的概率获得已知最优解。对于规模较大的 TSP问题 ,嵌套插队算法 ( NQJA)能获得质量高于著名的启发式算法的解。另外 ,用嵌套插队算法找到的 China144的最短路径优于目前已知的最短路径。嵌套插队算法是专门针对 TSP问题而提出的 ,但其思想也可以给求解其他
This paper presents a new approximate algorithm Nested Queue-Jumping Algorithm (NQJA) to solve traveling salesman problem. The proposed algorithm incorporates the thoughts of heuristic algorithm, randomized algorithm and local optimization. Numerical results show that to the small-scale instances, using Queue-Jumping Algorithm (QJA) directly the known optimal solution with a large probability can be obtained. In the case of large-scale instances, NQJA generates high-quality solution compared to well know heuristic methods. Moreover, the shortest tour to China144 TSP found by NQJA is shorter than known optimal tour. It can be a very promising alternative for finding a solution to the TSP. NQJA is specially devised for TSP. But its thought can give elicitation for other NP-hard combinatorial optimization problems.
出处
《重庆邮电学院学报(自然科学版)》
2003年第3期51-56,共6页
Journal of Chongqing University of Posts and Telecommunications(Natural Sciences Edition)
关键词
TSP问题
插队算法
嵌套插队算法
随机化算法
traveling salesman problem
queue-jumping algorithm
nested queue-jumping algorithm
randomized algorithm