期刊文献+

用周期Green函数方法全面提取耦合模式模型参量 被引量:5

原文传递
导出
摘要 结合谐波导纳和周期Green函数概念,采用Chebyshev多项式拟合电荷分布以便有效表征其指边缘的奇异性,对周期Green函数作了奇异性分解和渐近近似处理,从而实现了对周期栅格电极阵下表面波传播的精确、快速求解。尤其是利用禁带边缘处的驻波场特性获得了耦合反射系数的相位。由此快速、准确、全面地提取了材料的耦合模式参数。
出处 《中国科学(E辑)》 CSCD 北大核心 2003年第4期357-364,共8页 Science in China(Series E)
基金 国家自然科学基金(批准号:10074034 60261003)
  • 相关文献

参考文献17

  • 1Chen D P, Haus H A. Analysis of metal-strip SAW gratings and transducers. IEEE Trans on Sonics and Ultrason, 1985, 32(3):395-408.
  • 2Hartmann C S, Abbott B P. Experimentally determining the transduction magnitude and phase and the reflection magnitude and phase of SAW SPUDT structures. In: Proc IEEE Ultrason Symp, Honolulu, 1990, 37-42.
  • 3Milsom R E Reilly N H C, Redwood M, Analysis of generation and detection of surface and bulk acoustic waves by interdigital transducers, IEEE Trans on Sonics and Ultrason, 1977, 24(3): 147-166.
  • 4Wang C H, Chen D P. Generalized Green's functions at surface excitation of elastic wave fields in a piezoelectric half-space.Chinese J Acoust. 1985.4(4): 297-313.
  • 5Plessky V P, Thorvaldsson T. Periodic Green's functions analysis of SAW and leaky SAW propagation in a periodic system of electrodes on a piezoelectric crystal. IEEE Trans on Ultrason Ferroelec Freq Contr, 1995, 42(2): 280-293.
  • 6Ventura P, Hodé J M, Solal M, A new efficient combined FEM and periodic Green's function formalism for the analysis of periodic SAW structure, In: Proc IEEE Ultrason Syrup, Seattle, 1995, 263-268.
  • 7Ventura P, Hodé J M, Solal M, et al, Numerical methods for SAW propagation characterization. In: Proc IEEE Ultrason Symp,Sendai, 1998, 175-186.
  • 8Ventura P, Hodé J M, Desbois J, et al, Combined FEM and Green's function analysis of periodic SAW structure, application to the calculation of reflection and scattering parameters, IEEE Trans on Ultrason Ferroelec Freq Contr, 2001,48(5): 1259-1274.
  • 9Zhang Y, Desbois J, Boyer L, Characteristic parameters of surface acoustic waves in a periodic metal grating on a piezoelectric substrate. IEEE Trans on Ultrason Ferroelec Freq Contr, 1993, 40(3): 183-192.
  • 10Hashimoto K Y, Zheng G Q, Yamaguchi M. Fast analysis of SAW propagation under multi-electrode-type gratings with finite thickness. In: Proc IEEE Ultrason Syrup, Toronto, 1997. 279-284.

同被引文献47

  • 1徐方迁,何世堂.不同晶体对称类的栅条反射系数的理论与实验研究[J].声学学报,2005,30(1):26-30. 被引量:1
  • 2徐方迁,何世堂.SH型声表面波在栅阵中传播特性的变分原理研究[J].声学学报,2007,32(3):239-244. 被引量:3
  • 3刘建生,何世堂.声表面波耦合模模型参量的快速计算[J].声学学报,2007,32(4):323-327. 被引量:5
  • 4KOSKELA J, PLESSKY V P. SAW/LSAW COMparameter extraction from computer experiments with harmonic admittance of a periodic array of electrodesr[J]. IEEE Transactions on Ultrasonics, Ferroelec- trics, and Frequency Control, 1999, 46(4): 806-816.
  • 5SVESHNIKOV B V, SHITVOV A P. Evaluation ofdispersion in COM-parameters[C]//USA:IEEE Ultra- sonics Symposium, 2003:715 719.
  • 6PASTUREAUD T. Evaluation of the P-matrix param- eters frequency variation using periodic FEM/BEM analysis [C]//France: IEEE Ultrasonics Symposium,2004: 80-84.
  • 7HAUS H A,CHEN D P. Analysis of metal-strip SAW gratings and transducers [C]//USA: IEEE Transac- tions, Sonics and Ultrasonics, 1985 : 395-408.
  • 8水永安.声表面波与声表面波器件[M].南京:南京大学,1998:153-155.
  • 9王为标.有限长声表面波器件的精确模拟[D].南京:南京大学,2005.
  • 10HAUS H A, HUANG W, Coupled-mode theory[J]. Proceedings of the IEEE, 1991,79(10): 1505-1518.

引证文献5

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部