期刊文献+

Quasiparticle Spectrum of Quantum Degenerate Fermi Gas in the Presence of Self—Consistent Magnetization Field

Quasiparticle Spectrum of Quantum Degenerate Fermi Gas in the Presence of Self-Consistent Magnetization Field
下载PDF
导出
摘要 In this paper, we develop a systematic and simple method to derive quasiparticle spectrum of the quantum degenerate Fermi gases within the framework of Hartree–Fock–Bogoliubov theory which turns a general nonlinear two-body interaction Hamiltonian into a bilinear Hamiltonian by introducing certain self-consistent mean fields. Applying the approach, we obtain the quasi-particle spectrum of the model describing the superfluid phase transition that arises when a Feshbach resonance pairing occurs in a dilute Fermi gas in the presence of the magnetization fields and . When the gap parameter Δ is smaller than one or both of the magnetization fields, the spectrum manifests roton-type structure dramatically different from the spectrum in the absence of the magnetization fields.
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2003年第5期543-548,共6页 理论物理通讯(英文版)
基金 国家重点基础研究发展计划(973计划),国家自然科学基金,国家自然科学基金,中国科学院'百人计划'
关键词 matter waves Fermi gases SPECTRUM 准粒子光谱 量子退化费尔米气体 物质波 自相容磁化 HFB理论 哈密顿量
  • 相关文献

参考文献11

  • 1G.M. Bruun and C.W. Clark, Phys. Rev. Lett. 83 (2000)5416; L. Vichil and S. Stringari, Phys. Rev. A60 (1999)4734; A. Csordás and R. Graham, Phys. Rev. A63 (2001)013606; E.H. Lieb and J. Yngvason, Phys. Rev. Lett. 80(1998) 2504.
  • 2M. Holland, et al., Phys. Rev. Lett. 87 (2001) 120406.
  • 3E. Timmermans, et al,, Phys. Lett. A285 (2001) 228.
  • 4G.M. Bruun, et al., Phys. Rev. A64 (2001) 033609;H.T.C. Stoof, et al., Phys. Rev. Lett. 76 (1996) 10; L.You and M. Marinescu, Phys, Rev. A60 (1999) 2324; W.Zhang, C,A. Sackett, and R.G. Hulet, Phys. Rev. A60(1999) 504.
  • 5M.L. Chiofalo, et al., Phys. Rev, Lett. 88 (2002) 090402.
  • 6M.A. Baranov and D.S. Petrov, Phys. Rev. A62 (2000)041601(R); A. Minguzzi and M.P. Tosi, Phys. Rev. A63(2001) 023609.
  • 7Y. Wu, X. Yang, and Y. Xiao, Phys.Rev. Lett. 86 (2001)2200; Y. Wu, M.C. Chu, and P.T. Leung, Phys. Rev. A59(1999) 3032.
  • 8X. Yang and Y. Wu, J. Phys. A32 (1999) 7375; Y.Wu and X. Yang, J. Phys. A34 (2001) 327; A. Miranowicz, et al., Phys. Rev. A65 (2002) 062321; OE.E.Müstecaplioglu and L. You, Phys. Rev. A65 (2002)033412; OE.E. Müstecaplioglu, M. Zhang, and L. You,Phys. Rev. A66 (2002) 033611; Y. Wu and R. Coté, Phys.Rev. A66 (2002) 025801; J.B. Xu, X.C. Gao, and T.Z.Qian, Europhys. Lett. 25 (1994) 165.
  • 9Y. Wu, et al., Phys. Rev. A62 (2001) 063603; Y. Wu,Phys. Rev. A61 (2000) 033803; Y. Wu, Phys. Rev. A54(1996) 4534; Y. Wu, Phys. Rev. A54 (1996) 1586; Y. Wu and X. Yang, Phys. Rev. A56 (1997) 2443; X. Yang, et al,Phys. Rev. A55 (1997) 4545; Y. Wu and X. Yang, Phys.Rev. Lett. 78 (1997) 3086; X.X. YI, Commun. Theor.Phys. (Beijing, China) 37 (2002) 487; H.S. ZENG, et al.,Commun. Theor. Phys. (Beijing, China) 37 (2002) 341;M.F, Fang, et al., Phys. Rev, A63 (2001) 013812; B.J.Dalton, S.M. Barnett, and B.M. Garraway, Phys. Rev.A64 (2001) 053813; J.B. Xu and X.B. Zou, Phys. Rev.A60 (1999) 4743; Wen-Hua Hai, et al., J. Phys. A32(1999)8265.
  • 10L.D. Landau, J. Phys. (Moscow) 5 (1941) 71; ibid. 11(1947) 91; R.F. Feynman, Phys. Rev. 91 (1953) 1291;ibid. 91 (1953) 1301; ibid. 94 (1954) 292; R.P. Feynmanand M. Cohen, Phys. Rev. 102 (1956) 1189.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部