期刊文献+

非线性系统神经模糊自适应控制的问题与策略 被引量:3

Dynamic neuro-fuzzy adaptive control of nonlinear systems
原文传递
导出
摘要 针对具有未知动力学的机械臂系统 ,提出一系列神经模糊自适应控制方法。提出神经模糊动态逆稳定自适应控制方法 ,该方法使用动态神经模糊系统逼近非线性动态系统 ,设计的动态逆控制器可以通过参数的设定保证闭环系统在初始控制段的动态性能 ,而无需事先要求机械臂状态位于某一紧集的假设。结合延时神经模糊网络 ,引入降维观测器估计输出重定义后机械手的速度矢量 ,从而建立了非线性系统的控制器观测器设计的新方法。采用了动态逆和“Back-stepping(后退 )”的技术 。 A set of neuro fuzzy adaptive control approaches was developed for robotic manipulators with poorly known dynamics. The dynamic neuro fuzzy adaptive control based on dynamic inversion approximates the dynamics of the whole nonlinear system. The dynamic inversion guarantees the dynamic system performance in the initial control stage and facilitates controller design because it does assume that the system state is within a compact set because the compact set can not be specified before the control loop is closed. A controller observer design was developed for a flexible link manipulator that combined a time delay neuro fuzzy network and a reduced order observer. The neuro fuzzy method based on dynamic inversion has been expanded to control the flexible link manipulator with actuator dynamics using the backstepping technique, which is an open control problem.
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2003年第4期470-474,共5页 Journal of Tsinghua University(Science and Technology)
基金 国家自然科学基金资助项目 ( 60 0 840 0 2 60 1740 18) 国家"八六三"高技术项目 ( 863 -70 4-2 -18) 教育部全国优秀博士学位论文作者专项基金 ( 2 0 0 0 41)
关键词 非线性系统 神经模糊自适应控制 神经模糊网络 动态神经模糊系统 稳定性 nonlinear systems neuro fuzzy systems adaptive control stability
  • 相关文献

参考文献13

  • 1SUN Fuchun, SUN Zengqi. Neural network-based adaptive controller design of robot manipulators with an observer [J].IEEE Trans on Neural Networks, 2001, 12(1): 54-67.
  • 2SUN Fuchun, SUN Zengqi. Stable neuro-fuzzy adaptive controller design for flexible-link robots including motor dynamics [A]. Int Conf on Computational Control,Robotics, and Autonomous Systems [C]. Singapore: World Scientific Press, 2001. 385 - 391.
  • 3Iiguni Y,Sakai H, Tokumaru H. A nonlinear regulator design in the presence of system uncertainties using multilayer neural networks [J]. IEEE Trans on Neural Networks, 1991, 2(2): 410-417.
  • 4Sanner R M, Slotine J J E. Stable adaptive control of robot manipulators using ‘neural' networks [J]. Neural Computation, 1995, 7(3) : 753 - 790.
  • 5Sun F C, Sun Z Q. Stable neural network-based adaptive control for sampled-data nonlinear systems [J]. IEEE Trans on Neural Networks, 1998, 9(5): 956- 968.
  • 6Lee J X, Vukovich G. The dynamic fuzzy logic system:nonlinear system identifcation and application to robotic manipulators [J]. J of Robotic Systems, 1997, 14(6):391 - 405.
  • 7Rovithakis G A, Christodoulou M A. Adaptive control of unknown plants using dynamical neural networks [J]. IEEE Trans on Systems, Man, and Cybernetics, 1994, 24(3):400 - 412.
  • 8Lin C T, Lee C S G. Neural Fuzzy Systems: A Neuro-Fuzzy Synergism to Intelligent Systems [M]. Prentice-Hall, 1996.
  • 9Tanaka K, Ikeda T, Wang H O. Robust stabilization of a class of uncertain nonlinear systems via fuzzy control:quadratic stabilizability, H^∞ control theory, and linear matrix inequalities [J]. IEEE Trans on Fuzzy Systems,1996, 4(1): 1-13.
  • 10Wang H O, Tanaka K, Griffin M F. An approach to fuzzy control of nonlinear systems : stability and design issues [J].IEEE Trans on Fuzzy Systems, 1996, 4(1):14 - 23.

同被引文献81

引证文献3

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部