期刊文献+

格分片线性函数的辨识和优化

Identification and optimization of lattice piecewise-linear functions
原文传递
导出
摘要 格分片线性模型由一个实数矩阵和一个 0 - 1矩阵所确定 ,能够表示任意维变量的全体连续分片线性函数 ,其实数矩阵完全由它的局部线性函数的参数向量所组成。这些特点为辨识分片线性函数和利用线性模型的分析方法解决分片线性模型描述的非线性问题提供了极大的便利。该文引入格分片线性模型解决非线性函数的辨识问题。给出了辨识格分片线性函数的实用算法。并对线性约束下的格分片线性函数优化问题提出了通过线性规划算法确定全局最优解的简单方法。这些工作表明 。 A lattice piecewise linear model is parameterized by a real matrix containing the parametric vectors of all local linear functions and a zero one matrix determining how to connect them, which can represent all continuous piecewise linear functions of any dimension. Practical algorithms are proposed to identify a lattice piecewise linear function from the sampled data and to optimize such an objective function with linear constraints using linear programming. A global optimal solution is guaranteed for the nonlinear optimization problem. It is shown by these works that the lattice piecewise linear model is a powerful tool to solve nonlinear problems.
作者 王书宁
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2003年第4期548-552,共5页 Journal of Tsinghua University(Science and Technology)
基金 国家自然科学基金资助项目 ( 699740 2 3 6993 40 10 ) 国家教育振兴计划
关键词 格分片线性模型 格分片线性函数 实数矩阵 0-l矩阵 分片线性逼近 非线性问题 lattice piecewise linear model piecewise linear approximation nonlinear identification global optimization
  • 相关文献

参考文献7

  • 1Kang S M, Chua L O. A global representation of multidimensional piecewise-linear functions:938 - 940.
  • 2Kahlert C, Chua L O. A generalized canonical piecewise-linear representation [J]. IEEE Trans Circuits Syst, 1990, 37(3): 373-383.
  • 3Lin J, Unbehauen Roll. Canonical piecewise-linear networks[J]. IEEE Trans Neural Networks, 1995, 6(1) ; 43 - 50.
  • 4LI Xingye, WANG Shuning. A canonical representation of high dimensional continuous piecewise linear functions [J].IEEE Trans Circuits Syst I, 2001, 48(11) : 1347 - 1351.
  • 5Tarela J M, Martinez M V. Region configurations for realizability of lattice piecewise-linear models [J]. Math Comput Modelling, 1999, 30:17 - 27.
  • 6Nelles O. Orthonormal basis functions for nonlinear system identification with local linear model trees (LOLIMOT)[A]. Proc of the 11th IFAC Symposium on System Identification [C]. Kitakyushu, Japan, 1997. 667- 672.
  • 7Breiman L. Hinging hyperplanes for regression,classification, and function approximation [-J']. IEEE Trans Information Theory, 1993, 39(3): 999 - 1013.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部