期刊文献+

几个Iyengar型积分不等式

Several lyengar type integral inequalities
下载PDF
导出
摘要 对于n阶导数(n≥1)为有界的函数,通过在Hayshi积分不等式中选择适当的函数,建立四个Iyen-gar型积分不等式。 For the function involving bounded nth-order derivative( n≥1 ) ,using appropriate functions in Hayashi s integral inequality, four lyengar type integral inequalities are established.
作者 石艳霞 刘证
出处 《鞍山科技大学学报》 2003年第2期112-115,共4页 Journal of Anshan University of Science and Technology
关键词 N阶导数 Hayashi积分不等式 Iyengar型积分不等式 函数 nth-order derivative Hayashi's integral inequality Iyengar integral inequality Iyengar type integral in-equality
  • 相关文献

参考文献7

  • 1徐利治 王兴华.数学分析的方法及例题选讲:修订版[M].北京:高等教育出版社,1984.163,164.
  • 2ELEZOVIC N PEC ARIC.Steffensen''s inequality and estimates of error in trapezoidal rule[J].Appl Math Letters,1998,6:63-69.
  • 3MITRINOVIC′ D S PEC ˇARIC ′ J FINK A M.Classical and new inequalities in analysis[J].Kluwer:Dordrecht,1993,:311-311,312.
  • 4AGARWAL R P, DRAGOMIR S S. An application of Hayashi' s inequality for differentiable function[ J ]. Computers Math Appl, 1996,6:95 - 99.
  • 5ELEZOVIC N, PECARIC J. Steffensen s inequality and estimates of error in trapezoidal rule[ J ]. Appl Math Letters, 1998,6:63 - 69.
  • 6AGARWAL R P, CUIJAK V,PECARIC J. Some integral inequalities involving bovnded higher order derivatives[ J] .Math Comput Modelling, 1998,3:51 - 57.
  • 7MITRINOVI C D S,PECARIC J, FINK A M. Classical and new inequalities in analysis[ M] .Kluwer:Dordrecht, 1993:311,312.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部