期刊文献+

机械噪声故障特征提取的盲分离法与小波提纯法 被引量:8

Acoustic Feature Extraction of Rotating Machines Using Blind Source Separation and Wavelet Analysis
下载PDF
导出
摘要 机械噪声故障特征提取的难点在于观测信号的信噪比较小 .将盲分离技术引入噪声故障特征提取 ,通过声源信号的相互独立性质 ,使用二阶盲分离算法从观测的混合信号中提取独立声源信号 ,然后 ,通过随机噪声与有效信号在多尺度空间中模极大值的不同传播特性 ,使用小波模极大值法提取有效信号特征 .该算法不仅消除了临近机器或部件辐射噪声的干扰 ,还消除了随机噪声的干扰 ,有效提取了机械噪声故障特征 . In acoustic monitoring, the observed signal is usually the mixture of sound signals of all machines and it has a very low signal-to-noise ratio. To eliminate the mutual interference of sound signals, the blind source separation was used to recover the sound signals of independent sources. The second-order blind separation algorithm was proposed to reconstruct the spectrum of the monitored system. Then, the wavelet analysis was introduced and the maximum modulus method was used to remove the interference of random noise. The signal-to-noise ratio of monitored system is significantly enhanced via the proposed methods. The acoustic features can be obtained from the purified signal easily. The experiment results made in semi-anechoic chamber demonstrate the effectiveness of the presented methods.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2003年第5期766-769,共4页 Journal of Shanghai Jiaotong University
基金 国家自然科学基金 (5 0 0 75 0 5 2 ) 北京市光电转换装置与噪声信号处理技术实验室资助项目
关键词 故障诊断 声学监测 特征提取 盲源分离 小波 Blind source separation Feature extraction Signal to noise ratio Wavelet transforms
  • 相关文献

参考文献11

  • 1杜芳,卢文胜,曹文清.振动台试验测试信号去噪的小波变换方法[J].振动与冲击,1999,18(2):26-29. 被引量:11
  • 2吴军彪,陈进,伍星.基于盲源分离技术的故障特征信号分离方法[J].机械强度,2002,24(4):485-488. 被引量:34
  • 3张洪渊,贾鹏,史习智.互累积量迫零法信号源盲分离[J].上海交通大学学报,2001,35(8):1159-1162. 被引量:2
  • 4Lyon R H. Machinery noise and diagnostics [M].Butterworths.. Boston, 1987.
  • 5Jing Lin. Feature extraction of machine sound using wavelet and its application in fault diagnosis [J].NDT & E International, 2001,34 : 25-- 30.
  • 6Shibata K, Takahashi A, Shirai T. Fault diagnosis of rotating machinery through visualisation of sound signals[J]. Mechanical Systems and Signal Processing,2000,14(2) :229-- 241.
  • 7Gelle G, Colas M, Delaunay G. Blind sources separation applied to rotating machines monitoring by acoustical and vibrations analysis[J]. Mechanical Systems and Signal Processing, 2000,14 (3) : 427-- 442.
  • 8Comon P. Independent component analysis, a new concept? [J]. Signal Processing, 1994,36 (1) : 287--314.
  • 9Adel B, Karim A M, Cardoso J F, et al. A blind source separation technique using second-order statistics [J]. IEEE Trans on Signal Processing,1997,45(2) :434--444.
  • 10Cardoso J F. Blind signal separation: statistical principles [J]. Proceedings of the IEEE, 1998,86 (10) :2009--2025.

二级参考文献22

  • 1崔锦泰 程正兴(译).小波分析导论[M].西安:西安交通大学出版社,1995..
  • 2[1]Jutten C, Herault J. Blind separation of sources. Part Ⅰ. An adaptive algorithm based on neuromimetic architecture [J]. Signal Processing, 1991, 24:1~20.
  • 3[2]Cardoso J F, Souloumiac A. Blind beamforming for non-Gaussian signals [J]. IEEE Proceedings-F, 1993, 140(6):362~370.
  • 4[3]Cardoso J F, Laheld B. Equivariant adaptive source separation [J]. IEEE Transactions on Signal Processing, 1996, 44:3017~3030.
  • 5[4]Amari S, Cichocki A. Adaptive blind signal processing: neural network approaches [J]. Proceedings of the IEEE, 1998, 86(10):2026~2048.
  • 6[5]Cardoso J F. Blind signal separation: statistical principles [J]. Proceedings of the IEEE, 1998,86(10):2009~2025.
  • 7[6]Nikias C L, Raghuveer M. Bispectrum estimation: a digital signal processing framework [J]. Proceedings of the IEEE, 1987, 75(7):869~891.
  • 8崔锦泰,小波分析导论,1995年
  • 9Mallat S,IEEE Trans Information Theory,1992年,38卷,2期,617页
  • 10刘贵忠,小波分析及其应用,1992年

共引文献44

同被引文献140

引证文献8

二级引证文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部