期刊文献+

基于数据挖掘技术的范例库维护 被引量:4

Case based maintaining with data mining
下载PDF
导出
摘要 在范例推理系统中,系统的学习会使范例库无限增大,会导致系统的功能不断下降。范例推理学习系统必须有范例库的维护。本文在详细讨论了范例库的维护技术的同时,提出了一个基于数据挖掘技术的维护策略,以保证系统的学习不影响系统性能。 In case-based system, learning makes the case base expand quickly,which enable the search time becoming longer and longer.At this time,the system needs maintenance. In general, there are some methods about maintenance,for instance, utility policy,deletion policy. This paper discusses emphatically a method based on data mining policy . The experimental result shows that the method has better performance than other methods.
出处 《安徽大学学报(自然科学版)》 CAS 2003年第2期13-17,共5页 Journal of Anhui University(Natural Science Edition)
基金 安徽省教育厅自然科学基金资助项目(2001kj002)
关键词 人工智能 范例推理系统 范例库 维护策略 数据挖掘 知识库 case-based reasoning case based maintenance data mining cluster
  • 相关文献

参考文献9

  • 1史东辉,蔡庆生,倪志伟,张春阳.基于规则的分类数据离群挖掘方法研究[J].计算机研究与发展,2000,37(9):1094-1100. 被引量:22
  • 2史忠植.知识发现[M].北京:清华大学出版社,2001..
  • 3梁伍七.基于XML文档的数据绑定技术浅析[J].安徽大学学报(自然科学版),2003,27(1):29-33. 被引量:1
  • 4Mario Lenz, et al. Case- based reasoning :hom foundations to applications[ M]. Berlin, Springer, 1998 .
  • 5Wettschereck,D and Dietterich T G. An experimental comparison of the nearest neighbor and nearest hype-rectangle a]gorithms[J] . Machine Learning, 1995,19:5-28.
  • 6McSherry, D. Automating Case Selection in the Construction of a Case Library[J]. Knowledge - Based Systems,2000,13 : 133 - 140.
  • 7B Smith, M T Keone. Remembering to forget: A Competence- Preserving Case Deletion Policy for Case -Based Reasoning Systems[ J ]. In: Proc 14th International Joint Conference on Artificial Intelligence, 1995.337- 382.
  • 8Barry Smyth and Elizabeth McKenna. Footprint - based retrieval[J]. Ptoceedings of the 3rd International Conference on Case- Based reasoning. Munich, Gemmny ,July,1999.
  • 9D Skalak .Prototype and feature selection by sampling and random mutation hill- climbing algorithm[J] .in Proc llth Int. Machine Learning Conference, 1994.293 - 301.

二级参考文献11

  • 1Steven Holzner.Inside XML[M].北京:中国青年出版社,2001..
  • 21,Knorr E, Ng R. Algorithms for mining distance-based outliers in large datasets. In: Proc of the 24th VLDB Conf. New York, 1998. 392~403
  • 32,Barnett V, Lewis T. Outliers in Statistical Data. New York: John Wiley & Sons,1994
  • 43,Knorr E, Ng R. A unified approach for mining outliers: Properties and computation. In: Proc of 1997 Int'l Conf on Knowledge Discovery and Data Mining( KDD'97). Newport Beach, California, 1997. 219~222
  • 54,Knorr E, Ng R. Finding intensional knowledge of distance-based. In: P roc of the 25th VLDB Conf. Edinburgh, Scotland, 1999. 211~222
  • 65,Breuning M, Kriegel H, Ng R. OPTICS-OF: Identifying local outliers. I n: Proc of the 3rd European Conf on Principles and Practice of Knowledge Discove ry in Databases(PKDD'99). Prague, 1999. 262~270
  • 76,Arning A, Agrawal R, Raghavan P. A linear method for deviation in larg e database. In: Proc of Int'l Conf on Data Mining and Knowledge Discovery(KDD'9 6). Portland, 1996. 164~169
  • 87,Guha S, Rastogi R, Shim K. Rock: A robust clustering algorithm for cat egorical attributes. In: Proc of 1999 Int'l Conf on Data Engineering. Sydney, 19 99. 512~521
  • 98,Agrawal R, Srikant R. Fast algorithms for mining association rules. I n: Proc of 1994 Int'l Conf on Very Large Data Bases (VLDB94). Santiage, Chile, 1 994. 487~499
  • 109,Agrawal R, Imielinski T, Swami A. Mining association rules between set s of items in large databases. In: Proc of ACM SIGMOD Conf on Management of Data (AIGMOD'93). Washington, 1993. 207~216

共引文献38

同被引文献31

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部