期刊文献+

应用支持向量机实现计算机入侵检测 被引量:5

Detecting intrusions by using support vector machines
下载PDF
导出
摘要 介绍入侵检测的概况和支持向量机的基本概念和工作原理,提出了应用支持向量机进行异常入侵检测的工作过程,并以程序执行迹为数据源给出了应用支持向量机进行入侵检测的性能.该结果显示出在先验知识,即训练样本数少的条件下,该方法仍能达到较为满意的效果. The most common technology used in intrusion detection are anomaly detection technology and misuse detection technology, both of which are based on the mass prior knowledge. When given less prior knowledge, the performance of both techniques can not meet our need. Because SVM solves the small samples learning problem well, it will get good performance using SVM in intrusion detection, given less knowledge. A survey of intrusion detection is described and the basic concepts about SVM are introduced. The procedure of detection intrusions using SVM are discussed in detail. Finally, the experiment was performed on system call trace. The result shows that its performance is still good when given less prior knowledge.
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2003年第3期353-356,373,共5页 Journal of Xidian University
基金 十五"预研资助项目(4100104030)
关键词 入侵检测 支持向量机 计算机安全 先验知识 程序执行迹 intrusion detection computer security support vector machine
  • 相关文献

参考文献6

  • 1李鸿培,王新梅.基于神经网络的入侵检测系统模型[J].西安电子科技大学学报,1999,26(5):667-670. 被引量:41
  • 2Denning D E. An Intrusion Detection Model[J]. IEEE Trans on Software Engineering, 1987, 13(2): 222-232.
  • 3Forrest S, Perrelason A S. Self-nonself Discrimination in a Computer[A]. Proceedings of the 1994 IEEE Synposium on Besearch in Security and Privacy[C]. California: IEEE Computer Society, 1997. 202-212.
  • 4Lee W, Xiang D. Information-theoretic Measures for Anomaly Detection[A]. The 2001 IEEE Symposium on Security and Privacy[C].Oaklnnd: IEEE Computer Society, 2001. 130-143.
  • 5Vapnik V N. The Nature of Statistical Learning Theory[M]. New York: Springer-Verlag, 1995.
  • 6Warrender C, Forrest S, Pearlmutter B. Detecting Intrusions Using System Calls: Alternative Data Models[ A ]. The 1999 IEEE Symposium on Security and Privacy[C]. Oaklnnd: IEEE Computer Society, 1999. 133-144.

二级参考文献2

共引文献40

同被引文献50

  • 1刘新浙.几种人工智能技术在入侵检测系统中的应用[J].铁路计算机应用,2004,13(8):23-25. 被引量:4
  • 2李树文.人工智能在入侵检测系统中的应用[J].太原科技,2006(2):46-47. 被引量:4
  • 3Vapnik V, Chapelle O. Bounds on Error Expectation for Support Vector Machines[J]. Neural Computation, 2000, 12(9): 2013-2016.
  • 4Blake C L. Merz, UCI Repository of Machine Learning Databases[DB/OL]. http://www.ics.uci.edu/~mlearn/MLRepository.html, 1998-10-10.
  • 5Jaoachims T. Estimating the Generalization Performance of a SVM Efficiently[M]. LS VⅢ-Report 25, Germany: University Dortmund. 1999.
  • 6Vapnik V N. The nature of Statistical Learning Theory[M]. New York: Springer-Verlag, 2000.
  • 7Burges J C. A Tutorial on Support Vector Machines for Pattern Recognition[A]. Data Mining and Knowledge Discovery[C]. Boston: Kluwer Academic Publishers, 1999. 121-167.
  • 8Devroye L, Gyorfi L, Lugosi G A. A Probabilistic Theory of Pattern Recognition[M]. New York: Springer-Verlag, 1996.
  • 9Lunts A, Brailovskiy V. Evaluation of Attribtes Obtained in Statistical Decision Rules[J]. Engineering Cybernetics, 1967, 3(1): 98-109.
  • 10Jaakkola T, Haussler D. Probabilistic Kernel Regression Models[A]. Proceedings of the Seventh Workshop on AI and Statistics[C]. San Fancisco: Society for Artificial Intelligence and Statistics, 1999. 26-34.

引证文献5

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部