期刊文献+

重根特征向量导数计算的特殊迭代法 被引量:1

Iterative Method for Eigenvector Derivatives with Repeated Eigenvalues
下载PDF
导出
摘要 在重根特征向量导数计算方法的发展中 ,为了从无限个特解中确定出唯一的通解 ,提出过不同定解条件 ,但正确定解条件是唯一的。最后公认的定解条件为ZTMZ′+Z′TMZ =-ZTM′Z ,这里认为Z′TMZ≠ZTMZ′。由此便引出物理矩阵 (刚度阵和质量阵 )的二阶导数。为了避免物理阵二阶导数的计算 ,本文在满足前述定解条件的前提下 ,利用一种特殊的迭代格式回避了物理阵二阶导数的引入。同时该迭代过程可直接获得通解 ,不同于目前流行的做法 :先由一个不定支配方程求其特解 ,然后才由定解条件确定通解。另外 ,数值表明 ,动柔度迭代式的精度可与直接迭代式相匹敌 ,可是动柔度迭代式用于许多特征向量导数计算时 。 In the field of eigenvector derivative computation to find an unique general solution from infinite particular solutions,the distinct Conditions of Determining Solution(CDS)were proposed,so that different general solutions were obtained.Finally,the CDS:Z TMZ+Z TMZ ′=-Z TM ′Z for repeted eigenvalue case is universally accepted,that is,Z ′T MZ≠Z TMZ ′is generally acknowledged .This CDS leads to occurrence of the second order derivatives of the physical matrices(i.e. stiffness and mass matrices).Under prerequisite of satisfying the previous CDS the calculation of the second order derivatives of the physical matrices is avoided by using an iterative format in this paper.In addition,this iterative process can directly find the general solution,but the existing methods give first particular solution,then determine general solution.Dynamic flexibility iterative method can economically be utilized in the calculation of many eigenvector derivatives in comparison with direct iterative method.
作者 张德文
出处 《强度与环境》 2003年第2期17-30,共14页 Structure & Environment Engineering
关键词 重根特征向量导数 计算 特殊迭代法 特征灵敏度 物理阵 通解 动柔度阵 Eigenvector derivative Eigen sensitivity Iteration
  • 相关文献

参考文献9

  • 1张德文,黄晓明,张令弥.动柔度与特征向量导数[J].计算力学学报,1999,16(3):261-269. 被引量:8
  • 2张德文,魏阜旋.重根特征向量导数计算的直接扰动法[J].固体力学学报,1993,14(4):337-341. 被引量:22
  • 3Ojalve I U. Gradients for large structural models with repeated frequencies[C] .Society of Automative Engineers, Paper 86- 1789,Warrendale, PA, Oct. 1986.
  • 4Dailey R L.Eigenvector derivatives with repeated eigenvalues[J]. AIAA Journal, 1989,27(4) :486- 491.
  • 5Fox R L and Kapoor M P. Rates of change of eigenvalues and eigenvectors[J] .AIAA Journal, 1968,6(12) :2426- 2429.
  • 6Zhang D W and Wei F S. Efficient computation of many eigenvector derivatives using dynamic flexibility method[J] .AIAA Journal, 1997,35(4) :712 - 718.
  • 7Wei S F and Zhang D W. Eigenvector derivatives with repeated eigenvalues using generalized inverse technique[J] .AIAA Journal,1996,34(10):2206-2209.
  • 8Zhang D W and Wei F S. Dynamic flexibility method with hybrid shifting frequency for eigenvector derivatives[J] .AIAA Journal,2002,40(10) :2047 - 2052.
  • 9Mills-Curren W C. Calculation of eigenvector derivatives for structure with repeated eigenvalues[J]. AIAA Journal, 1988,26(7) :867 - 871.

二级参考文献15

共引文献25

同被引文献8

  • 1张德文,张令弥.特征向量导数计算的改进直接扰动法[J].计算结构力学及其应用,1993,10(4):449-455. 被引量:6
  • 2Nelson R B.Simplified calculation of eigenvector derivatives[J].AIAA Journal,1976,14(9):1 201-1 205.
  • 3Ojalvo I U.Efficient computation of modal sensitivities for system with repeated frequencies[J].AIAA Journal,1988,26(3):361-366.
  • 4Dailey R L.Eigenvector derivatives with repeated eigenvalues[J].AIAA Journal,1989,27(4):486-491.
  • 5Mills-Curran W C.Comment on"eigenvector derivatives with repeated eigenvalues"[J].AIAA Journal,1990,28(10):1 846.
  • 6Mills-Curran W C.Calculation of eigenvector derivatives for structures with repeated eigenvalues[J].AIAA Journal,1988,26(7):867-871.
  • 7Lee J W.Numerical method for sensitivity analysis of eigensystems with non-repeated and repeated eigenvalues[J].Journal of Sound and Vibration,1996,195(1):17-32.
  • 8张德文.密集根之特征向量导数的改进高精度动柔度法[J].强度与环境,2002,29(4):5-10. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部