期刊文献+

神经网络对结构地震反应的预测及试验研究 被引量:6

NEURAL NETWORK PREDICTION FOR SEISMIC RESPONSE OF STRUCTURE AND EXPERIMENTAL STUDY
下载PDF
导出
摘要 本文基于神经网络对非线性系统具有辨识和预测功能 ,并结合具有二阶收敛效应的Levenberg_Marquardt算法 ,采用一多层前馈网络对建筑结构的地震反应进行了预测。首先以一三层钢筋混凝土结构的振动台试验数据对网络结构进行批量训练 ,然后用未曾训练的地震波数据对结构进行地震反应预测 ,并与试验数据进行对比 ,分析结果表明 :Lev enberg_Marquardt算法能快速收敛 ,神经网络能准确地预测结构的地震反应。 In the paper,based on identification and prediction ability of neural network for nonlinear systems,and combined Levenberg-Marquardt algorithm which has second-order-convergence effect,a multi-layer forward network is adopted to predict the seismic response of the structure.First of all,the network is trained in batch by the vibration table test data of three-floor reinforced concrete structure,then the seismic response of the structure is predicted with the raw earthquake data,and the predict response is compared with the experimenal one.It can be shown from the analysis that Levenberg-Marquardt algorithm is of very good convergence rate,and the neural network can predict the dynamic response of the structure well enough.
出处 《振动与冲击》 EI CSCD 北大核心 2003年第2期8-11,共4页 Journal of Vibration and Shock
基金 国家博士后基金项目 (中博基 0 1 4 )
关键词 神经网络 地震反应 预测 建筑结构 试验 Lev-enberg-Marquardt算法 减震 抗震方式 neural network,seismic response,prediction Levenberg-Marquardt algorithm
  • 相关文献

参考文献2

  • 1Tan Y, Saif M. Neural-Networks-Based Nonlinear Dynamic Modeling for Automotive Engines[ J]. Neurocomputing, 2000,30:129----142.
  • 2Hagan M T, Menhaj M B. Training Feedforward Networks with the Marquardt Algorithm [ J ]. IEEE Trans. Neural Networks, 1994, 5(6) :989---993.

同被引文献68

引证文献6

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部