期刊文献+

二阶微分方程边值问题的多重正解 被引量:6

MULTIPLE POSITIVE SOLUTIONS FOR BOUNDARY VALUE PROBLEM OF SECOND ORDER DIFFERENTIAL EQUATIONS
原文传递
导出
摘要 基于Leray-Schauder度理论和上下解方法讨论非线性边值问题(t)+g(t,y)=0,(0)=0,y(1)=b≥0的正解存在性,其中g局部Lipschitz连续,g(t,0)≥0,但是可以是变号函数。主要结论是:如果g(t,y)在y=+∞满足一个超线性增长条件,并且存在使得β(1)>0的非负上解β,则存在正数B使得当0<b<B时,至少存在两个正解;当b=0或b=B时,至少存在一个正解;而当b>B时,不存在正解。 The existence of positive solutions has been discussed for the nonlinear boundary value problem y'(t) + g(t,y) = 0, y'(0) = 0 and y(l) = b > 0, where g is locally Lipschitz continuous, g(t, 0) > 0 and may change sign. The main result as follows: If g(t, y) satisfies a superlinear condition at y = +00 and there exists a nonnegative supersolution B with B(1) > 0, then there exists a positive number B such that this problem has at least two positive solutions for 0 < 6 < B, at least one for 6 = 0 or 6 ?B, and none for b > B. Our approach is based on the Leray-Schauder degree arguments and the method of sub- and supersolutions.
作者 程建纲
机构地区 烟台大学数学系
出处 《应用数学学报》 CSCD 北大核心 2003年第2期272-279,共8页 Acta Mathematicae Applicatae Sinica
基金 国家自然科学基金(10071066 10251002号) 山东省自然科学基金(Y2002A10号)资助项目
关键词 常微分方程 边值问题 正解 LERAY-SCHAUDER度理论 上下解方法 存在性 LIPSCHITZ连续 Boundary value problem, positive solution, existence, sub- and supersolution, topological degree
  • 相关文献

参考文献5

  • 1翁佩萱,蒋达清.奇异二阶泛函微分方程边值问题的多重正解[J].应用数学学报,2000,23(1):99-107. 被引量:15
  • 2Wang Junyu, Gao Wenjie. A Note on Singular Nonlinear Two-point Boundary-value Problems.Nonlinear Analysis, 2000, 39:281-287.
  • 3Liu Zhaoli, Li Fuyi. Multiple Positive Solutions of Nonlinear Two-point Boundaxy Value Problems.J. Math. Anal. Appl., 1996, 203:610--625.
  • 4Agarwal R R, O'Regan D. A Note on Existence of Nonnegative Solutions to Singular Semi-positone Problems. Nonlinear Analysis, 1999, 36(5): 615-622.
  • 5Krasnoseiskii M A, Zabreiko P P. Geometrical Methods of Nonlinear Analysis. Berlin, Heidelbreg:Springer-Verlag, 1984.

二级参考文献8

  • 1李正元 叶其孝.反应扩散方程引论[M].北京:科学出版社,1990..
  • 2Weng Peixuan,Appl Math J Chin Univ,1997年,12卷,155页
  • 3Liu Zhaoli,J Math Anal Appl,1996年,203卷,610页
  • 4Erbe L H,Boundary Value Problems for Functional Differential Equations,1995年,143页
  • 5Erbe L H,J Comput Appl Math,1994年,53卷,377页
  • 6Erbe L H,J Math Anal Appl,1994年,184卷,640页
  • 7Erbe L H,Proc Am Math Soc,1994年,120卷,743页
  • 8李正元,反应扩散方程引论,1990年

共引文献14

同被引文献29

  • 1段振华,王丽芳.临界状态下中立型时滞差分方程振动的充分条件[J].长沙理工大学学报(自然科学版),2005,2(4):80-83. 被引量:1
  • 2Ma R. Positive .solutions of a nonlinear three-point boundary value problem[J]. Electron J Diff Eqns, 1999,34 : 1- 8.
  • 3Erbe L H, WANG Hai-yan. On the existence of positive solutions of ordinary differential equations[J]. Proc Amer Math Soc, 1994,120(3) :743-748.
  • 4Petio Kelevedjiev. On the existence of solutions of second boundary value problems for second order differential equation[J]. Nonlinear Analysis, 1998,32(4) :563-574.
  • 5Bernfeld S R, Lakshmikemtham V. An Introduction to Nonlinear Boundary Value Problems[M]. New York: Academic Press, 1974.
  • 6Zhang Yong. Positive solutions of singular sublinear emden-fowler of boundary value problems[J]. J Math Anal Appl, 1994(185) :215 - 222.
  • 7Jiang Daqing, Chu Jifeng, Zhang Meirong. Multiplicity of positive periodic solutions to superlinear repulsive singular equations[J]. J Differential Equations, 2005 (211 ) : 282 - 302.
  • 8Fink A M. Positive solutions of second order systems of boundary value problems[ J]. J Math Anal Appl, 1993, (180) : 93 - 108.
  • 9郭大均.非线性泛函分析[M].第2版.济南:山东科学技术出版社,2001:311-314.
  • 10[1]Callegari A J,Friedman M B.An analytical solution of nonlinear singular boundary value problem in the theory of viscous fluids.J Math Anal Appl,1968;21:510-529

引证文献6

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部