摘要
基于chi square检验、有趣度及信息增益理论,给出一种挖掘优化关联规则的算法.该算法将冗余的规则分为:一规则缺乏统计相关性,二规则不满足"新奇"的要求.实验结果表明,该算法可有效去除冗余规则,提高挖掘效率.
Based on theory of chisquare test, interest measure and information gain, an algorithm for mining optimized association rules is presented in this paper. In this algorithm,the redundant rules are divided into two parts: rules lacking statistical correlation and rules without 'novelty'. The experiment results show that the algorithm can prune the redundant rules effectively and improve the mining efficiency.
出处
《深圳大学学报(理工版)》
EI
CAS
2003年第2期22-28,共7页
Journal of Shenzhen University(Science and Engineering)
基金
广东省自然科学基金资助项目(011750)