期刊文献+

980nm脊型波导激光器腔面非注入区的研究 被引量:8

The Investigation of 980nm Ridge Waveguide Lasers with Current Non - injection Regions by Proton Implantation
下载PDF
导出
摘要 报导了质子注入技术在提高980nm半导体激光器可靠性上的应用。p-GaAs材料经过质子注入后获得高的电阻率。在距离腔面25μm的区域内进行质子注入,由此形成腔面附近的电流非注入区。腔面附近非注入区减少了腔面载流子的注入,因此减少了非辐射复合的发生,提高了激光器的灾变性光学损伤(COD)阈值。应用质子注入形成腔面非注入区的管芯的平均COD阈值功率达到268mW,而应用常规工艺的管芯的平均COD阈值功率为178mW。同常规工艺相比,应用质子注入形成腔面非注入区技术使管芯的COD阈值功率提高了50%。 The paper introduces the technology of proton implantation for improving the reliability of 980nm semiconductor lasers. After proton implantation, p - GaAs will obtain higher resistivity than before. About 25μm-long non-injection regions are introduced near both facets, where the injection current is blocked by high resistivity area. The current non-injection regions could reduce carriers inject to facets, and the rate of the nonradiative recombination would be reduced. So the Catastrophic Optical Damage(COD) level will higher than before. The average of the COD level of laser diodes with non-injection regions is 268mw,as well as the average of COD level of laser diodes without non-injection regions is 178mw. So compared to the conventional LD' s, the COD level has been improved 50% for the LD' s with non-injection regions by proton implantation.
出处 《激光与红外》 CAS CSCD 北大核心 2003年第2期109-111,共3页 Laser & Infrared
关键词 980nm半导体激光器 可靠性 质子注入 非注入区 COD 灾变性光学损伤阈值 掺饵光纤放大器 980nm semiconductor lasers,reliability,ion implantation,non-injection regions,COD
  • 相关文献

参考文献10

  • 1B Pedersen,B A Thompson,S Zemon,et al.Power requirements for Erbium-dopea fiber amplifiers pumped in 800,980,and 1480 nm bands[J].IEEE Photon.Techno.Lett.1992,4.46—49.
  • 2E Desurvire.Spectral noise figure of Er^3+-doped fiber amplifiers[J].IEEE Photon.Techno.Lett.,1990,2:208.
  • 3M Fukuda,M Okayasu,J Temmyo,et al.Degradation behavlor of 0.98-μm strained quantum well InGaAs/AlGaAs lasers under high-power operation[J].IEEE J.Quantum Electron.,1994,30:47l-476.
  • 4A Moser,A Oosenbrug,E E Latta et al.High-power operation of strained InGaAs/AlGaAs single quantum well lasers[J].Appl.Plays.Lea.,1991,59:2642-2644.
  • 5M Okayasu,M fukuda,T Takeshita,et al.Facet oxidation of InGaAs/GaAs strained quanttun-well lasers[J]J.Appl.Phys.,1991,69:8346—8351.
  • 6A V Syrbu,VPYakovlev,G I Suruceanu,et al ZnSe-facet-passivated InGaAs/InGaAsP/InGaPdiode lasers of high CW power and‘wallplug’efficiency[J].Electron.Lett.,1996,32:352—353.
  • 7J E Ungau,N S K Kwong,S W Oh,et al.High power980 nm nonabsorbing facet lasers[J].Electron.Lett.,1994,30:1766-1767.
  • 8R L Thornton,R D Burnham,T L Paoli.Higldy efficient multiple emitter index guided array lasers fabricated by silicon impurity induced disordering[J].Appl.Phys.Lett.,1986,48:7—9.
  • 9M Sagawa,K Hiramoto,T Toyonaka,et al,High power COD-free operation of O.98μm InGaAs/GaAs/InGaP lasers with non-injection regions near the facets[J],Electron.tett.1994,30:1410—1411.
  • 10J C Dyment,J C North,L A D’Asaro.Optical and electrical properties of proton-bombarded p-type GaAs[J].J.Appl.Physl,1973,44:207.

同被引文献58

引证文献8

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部