期刊文献+

32位浮点阵列乘法器的设计及算法比较 被引量:10

Design of a 32-Bit Floating-Point Array Multiplier and a Comparison of Algorithms
下载PDF
导出
摘要  讨论了乘法器用于补码运算的几种算法。通过比较,发现改进型Booth算法是较为理想的算法。该算法在不考虑乘数和被乘数符号的情况下,都可以用统一的步骤来完成乘法运算,而且无需对乘积作任何修正,这极大地提高了乘法器的运算速度。结合改进型Booth算法,设计了一个高性能32位浮点阵列乘法器,它能在单个时钟周期内完成一次24位整数乘或32位浮点乘。该乘法器适于VLSI实现,已被应用于DSP芯片设计之中。 Algorithms for two's complement multiplication are discussed It has been found that Modified Booth Algorithm is an ideal algorithm, which can accomplish multiplication without considering signs of multiplier and multiplicand, eliminating the need for modifying the product, so that the operation speed of the multiplier is greatly improved The algorithm has been implemented in a 32bit floatingpoint array multiplier, which performs singlecycle multiplications on 24bit integer or 32bit floatingpoint values The multiplier is suitable for VLSI implementation and has been used in DSP chip design
出处 《微电子学》 CAS CSCD 北大核心 2003年第3期190-195,共6页 Microelectronics
关键词 32位浮点阵列乘法器 改进型Booth算法 浮点运算 乘法阵列 运算速度 DSP芯片 Modified Booth Algorithm Floating point operation Multiplication array Multiplier
  • 相关文献

参考文献6

  • 1罗莉,胡守仁.一个并行高速乘法器芯片的设计与实现[J].计算机工程与科学,1997,19(4):57-61. 被引量:14
  • 2于敦山,沈绪榜.32位定/浮点乘法器设计[J].Journal of Semiconductors,2001,22(1):91-95. 被引量:22
  • 3Hwang K. Computer Arithmetic Principles, Architecture and Design [M]. John Wiley & Sons, 1979.
  • 4Baugh C R, Wooley B A. A two's complement parallel array multiplication algorithm [J]. IEEE Trans Computers, 1973; 22 (1): 1045-1047.
  • 5Ma G K, Taylor F J. Multiplier policies for digital signal processing [J]. IEEE ASSP Magazine, 1990; 7(1) :6-20.
  • 6Rabaey J M. Digital integrated circuits: a design perspective [M]. Prentice-Hall International, Inc. 2001.

二级参考文献6

  • 1[1]C.S.Wallace,IEEE Trans.Electron.Comput.,1964, EC-13 (2):14—17.
  • 2[2]Norio Ohkubo and Makoto Suzuki,IEEE J.Solid-State Circuits,1995,30(5):251—256.
  • 3[3]D.Zuras and W.H.McAllister,IEEE J.Solid-State Circuits,1986,SC-21(5):814—819.
  • 4[4]Z-J Mou and F.Jutand,1990 IEEE International Conference on Computer Design:VLSI in Computers and Processors,IEEE Comput.Soc.Press,1990,251—254.
  • 5[5]A.Tyagi,IEEE Trans.Comput.,1993,42(10):1163—1170.
  • 6[6]J.Mori and Masato Magamatsu,IEEE J.Solid-State Circuits,1991,26 (4):600—606.

共引文献33

同被引文献52

  • 1邹刚,邵志标,赵宁,许琪.32位嵌入式定/浮点乘法器设计[J].微电子学与计算机,2004,21(8):137-140. 被引量:5
  • 2侯华敏,杨虹.高性能乘加单元的设计[J].微电子学,2005,35(5):509-512. 被引量:4
  • 3赵忠民,林正浩.一种改进的Wallace树型乘法器的设计[J].电子设计应用,2006(8):113-116. 被引量:12
  • 4胡皓,赵文亮,罗熙.32位快速乘法器设计[J].电子测量技术,2006,29(5):190-192. 被引量:3
  • 5HE Ya-juan,CHANG Chip-hong,GU Jiang-min,et al. A novel covalent redundant binary Booth encoder[J]. 2005 IEEE International Symposium on Circuits and Systems (ISCAS 2005) ,2005 (1) :69-72.
  • 6BOOTH A D. A signed binary multiplication technique [J]. Quarterly Journal of Mechanics and Applied Mathematics, 1951,4 (2) :236-240.
  • 7KATTI R. A modified Booth algorithm for high radix fixed-point multiplication [J]. IEEE Transactions on Very Large Scale Integration(VLSI)Systems, 1994, 2 (4) :522-524.
  • 8Yeh Wenchang, Jen Cheinwei. High-speed booth encoded parallel multiplier design [ J ]. IEEE Transaction on Computers, 2000,49(7) :692 - 701.
  • 9Sousal Chaves R. A universal ariehitecture for designsing efficient module 2n + 1 multipliers[J]. IEEE Trans on Circuit and System, 2005,52(6):580- 583.
  • 10David A Patterson, John L Hennessy.计算机体系结构-量化研究方法[M].3版.北京:电子工业出版社,2004.

引证文献10

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部