期刊文献+

缓坡地形上非线性波浪变形的并行计算

Parallel computing of nonlinear wave transformation over topography with mild slopes
下载PDF
导出
摘要 基于椭圆型缓坡方程和消息传递接口机制,提出了缓坡地形上非线性波浪变形的一种并行数值模拟方法,并在微机群集并行系统上进行了数值实现。对一种典型缓坡地形上的非线性波浪传播变形进行了数值模拟,数值结果与实验数据的比较表明,在椭圆型缓坡方程中应用非线性波色散关系可有效考虑波浪的非线性效应,同时从获得的并行效率和并行加速比来看,并行数值方法可有效提高数值模拟效率。 Based on the elliptic mild slope equation and the Message Passing Interface (MPI), a parallel solution method is proposed for the simulation of nonlinear wave transformation over a topography with mild slopes, and implemented numerically on a personal computer (PC) cluster The nonlinear wave transformation over a typical topography with mild slopes is simulated A comparison of numerical results with experimental data shows that the application of the nonlinear dispersion relation to the elliptic mild slope equation can effectively take the nonlinear effect into account It can also be seen from the parallel efficiency and speedup rate that the parallel solution method proposed in the present paper can effectively increase the efficiency of numerical simulations
出处 《水科学进展》 EI CAS CSCD 北大核心 2003年第3期328-332,共5页 Advances in Water Science
基金 国家自然科学基金资助项目(59979025) 863计划资助项目(2001AA516010) 国家杰出青年科学基金资助项目(50125924) 广州能源研究所所长创新基金资助项目
关键词 缓坡地形 非线性水波 椭圆型缓坡方程 微机 群集系统 数值模拟 parallel computing nonlinear water waves elliptic mild slope equation PC cluster
  • 相关文献

参考文献11

  • 1郑永红,沈永明,邱大洪,夏进.近岸大区域水波数学模型及其数值求解[J].海洋学报,2000,22(5):106-112. 被引量:6
  • 2郑永红,沈永明.椭圆型缓坡方程的高效求解方法[J].水科学进展,2001,12(3):281-285. 被引量:2
  • 3郑永红,沈永明,邱大洪.应用非线性色散关系数值求解双曲型缓坡方程[J].水利学报,2001,32(2):69-75. 被引量:10
  • 4Van Der Vorst H A. BI-CGSTAB: A fast and smoothly converging variant of BI-CG for the solution of nonsymmetric Hnear system[J]. SIAM,J Sci Stat Comput, 1992, 13(2) : 631 - 644.
  • 5Berkhoff I C W. Computation of combined refiacfion-diffraction[ A]. Proc, 13^th International Conference Coastal Engineering[ C]. Vancouvc,ASCE, 1972, 1:471 - 490.
  • 6Kirby J T, Dalrymple R A. Verification of a parabolic equation for propagation of weakly-nonlinear waves[J]. Coast Engineering, 1984, 8:219- 232.
  • 7Panchang V G, Pearce B R. Solution of the mild-slope wave problem by iteration[J]. Applied Ocean Research, 1991, 13(4) : 187 - 199.
  • 8Li B, Anastasiou K. Efficient elliptic solvers for the mlid slope equation using the multigrid technique[J]. Coastal Ensineedng, 1992, 16:245-246.
  • 9Zhao Y, Anastasiou K. Modelling of wave propagation in the nearshore region using the mild slope equation with GMRES-based iterative salvers[J]. Int J Numer Methods Huids, 1996, 23:397-411.
  • 10Li B. A generalized conjugate gradient model for the mild slope equation[J]. Coastal Engineering, 1994, 18:215 -225.

二级参考文献7

  • 1Li Bin,Coastal Eng,1994年,23卷,227页
  • 2Zhao Y,Int J Numer Method Fluids,1996年,23卷,397页
  • 3Chen Yongze,J Fluid Mech,1995年,28卷,351页
  • 4Li Bin,Coastal Eng,1994年,23卷,215页
  • 5Li B,Coastal Eng,1993年,20卷,85页
  • 6Liu P L F,J Fluid Mech,1984年,141卷,165页
  • 7郑永红,沈永明,邱大洪,夏进.近岸大区域水波数学模型及其数值求解[J].海洋学报,2000,22(5):106-112. 被引量:6

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部